首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In goose salt gland slices incubated in bicarbonate-buffered medium which contained 170 mEq of Na+/liter, net total tissue Na+, expressed as milliequivalents per kilogram, was, in the presence of either acetylcholine (plus eserine) or ouabain, significantly higher than that of the bathing fluid. Acetylcholine caused an increase in the tissue Na+ content as compared with untreated slices; there was an approximately equivalent decrease in K+ and a significant decrease in Cl-. The calculated net intracellular concentrations of Na+, expressed as milliequivalents per liter of intracellular water, in unstimulated, acetylcholine-stimulated, and ouabain-treated slices were 2.1, 3.1, and 2.7 times higher, respectively, than the concentration of Na+ in the bathing fluid. The net intracellular concentration of Na+, expressed as milliequivalents per liter of intracellular water, in slices incubated in the presence of acetylcholine was 531 mEq/liter; this is approximately the same as the concentration of Na+ in the secreted fluid of the goose salt gland (515 mEq/liter). The results indicate that the main concentration gradient for Na+ could be established across the basal membrane. The data do not indicate whether this involves active transport of Na+ per se. A second stage which might involve Na-K ATPase activity at the luminal membrane is discussed. The sum of the total tissue Na+ and K+ was approximately 250 mEq/kg, whereas the Cl- content was only approximately 130 mEq/kg.  相似文献   

2.
The Malpighian (renal) tubules play important roles in ionic and osmotic homeostasis in insects. In Lepidoptera, the Malpighian tubules are structurally regionalized and the concentration of Na+ and K+ in the secreted fluid varies depending on the segment of tubule analyzed. In this work, we have characterized fluid and ion (Na+, K+, H+) transport by tubules of the larval stage of the cabbage looper Trichoplusia ni; we have also evaluated the effects of fluid secretion inhibitors and stimulants on fluid and ion transport. Ramsay assays showed that fluid was secreted by the iliac plexus but not by the yellow and white regions of the tubule. K+ and Na+ were secreted by the distal iliac plexus (DIP) and K+ was reabsorbed in downstream regions. The fluid secretion rate decreased > 50% after 25 μM bafilomycin A1, 500 μM amiloride or 50 μM bumetanide was added to the bath. The concentration of K+ in the secreted fluid did not change, whereas the concentration of Na+ in the secreted fluid decreased significantly when tubules were exposed to bafilomycin A1 or amiloride. Addition of 500 μM cAMP or 1 μM 5-HT to the bath stimulated fluid secretion and resulted in a decrease in K+ concentration in the secreted fluid. An increase in Na+ concentration in the secreted fluid was observed only in cAMP-stimulated tubules. Secreted fluid pH and the transepithelial electrical potential (TEP) did not change when tubules were stimulated. Taken together, our results show that the secretion of fluid is carried out by the upper regions (DIP) in T. ni Malpighian tubules. Upper regions of the tubules secrete K+, whereas lower regions reabsorb it. Stimulation of fluid secretion is correlated with a decrease in the K+/Na+ ratio.  相似文献   

3.
In vitro preparations of Locusta Malpighian tubules are able to transport K+ against its concentration gradient. The ‘urine’ is slightly hyper-osmotic with respect to the bathing solution and the rate of secretion is inversely dependent on the osmotic pressure of the latter. The rate of fluid secretion increases with increasing temperature; being maximal at approx 40°C. The ionic composition of the secreted fluid, as indicated by Na+/K+ ratios, is altered by the presence of 1 mM ouabain in the bathing solution. Fluid secretion is inhibited by 1 mM ouabain. In addition, oxygen consumption by the Malpighian tubules is inhibited by either the presence of 1 mM ouabain or the absence of K+ in the bathing solution. The relationship between respiration, active transport and the Na+K+-activated ATPase is discussed.  相似文献   

4.
In the dispersed acinar cells of the submucosal nasal gland in the guinea pig, intracellular Na+ concentration ([Na+]i) was measured with a microfluorimetric imaging method and the cytosolic indicator dye, sodium-binding benzofuran isophthalate, under HCO3?-free conditions. In the unstimulated condition, the [Na+]i was averaged to 12.8 ± 5.2 mM. Addition of 100 μM ouabain or removal of external K+ caused an increase in [Na+]i. Replacement of external Cl? with NO3? or addition of 0.5 mM furosemide reversibly decreased the [Na+]i. The recovery process from the reduced [Na+]i was inhibited by removal of either K+ or Cl? in the bath solution. These findings indicate the presence of a continuous influx of Na+ coupled with K+ and Cl? movement. Application of acetylcholine (ACh, 1 μM) caused an increase in [Na+]i by about 15–20 mM, which was completely inhibited by addition of 10 μM atropine. Increased cytosolic Na+ induced by ACh was extruded by the Na+-K+ pump. Removal of external Cl? and addition of 50 μM dimethylamiloride inhibited ACh-induced increase in [Na+]i by about 66% and 19%, respectively. In both unstimulated and stimulated state, Na+-K+ pump, Na-K-Cl cotransport, and Na+-H+ exchange play a critical role in maintaining intracellular electrolyte environment and in controlling a continuous secretion of nasal fluids. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Summary The lachrymal salt glands of hatchlings of the green sea turtle (Chelonia mydas) secrete a hyperosmotic (up to 2000 mosmol·kg–1) NaCl solution. X-ray microanalysis of frozen-hydrated glands showed that during secretion intracellular Na+ concentration in the principal cells increased from 13 to 34 mmol·l–1 of cell water, whilst Cl and K+ concentrations remained unchanged at 81 mmol·l–1 and 160–174 mmol·l–1, respectively. The high Cl concentration and the change in Na+ concentration are consistent with the prevailing paradigm for secretion by the structurally and functionally similar elasmobranch rectal gland. Concentrations of Na+, Cl and K+ in the lumina of secretory tubules of secreting (Na+ 122, Cl 167, K+ 38 mmol·l–1) and non-secreting (Na+ 114, Cl–1 174, K+ 44 mmol·l–1) glands were similar and the fluid was calculated to be approximately isosmotic with blood. In the central canals Na+ and Cl concentrations were similar but K+ concentration was lower (11–15 mmol·l–1). It is concluded that either a high transepithelial NaCl gradient in secretory tubules and central canals is very rapidly dissipated during the short time between gland excision and freezing, or that ductal modification of an initial isosmotic secretion occurs.  相似文献   

6.
Since addition of 10?4M AgNO3 to either an inside or outside bathing medium containing sulfate had no effect on short-circuit current (SCC), a measure of net Na+ transport, or transmural potential difference (PD) in the isolated surviving toadskin, the effect of adding Ag+ to chloridebased Ringer solution was studied. Exposure of the outside bathing medium to 10?4M AgNO3 resulted in, after a 20 minute time lag, a 250 ± 51% (N=6) increase in SCC within 100 minutes as opposed to an immediate response which had a 350 ± 26% (N=8) increase in SCC by addition of 10?4M AgNO3 to the inside bathing solution. The dose response curve relating change in SCC to the Ag+ concentration added to the inside bathing medium was saturable at 10?5M Ag+. The uptake of Ag+ by the tissue, as measured by atomic absorption spectrophotometry, showed no correlation to the relative change in SCC. Na+ flux experiments under short-circuited conditions showed that Ag+Cl? stimulated only the unidirectional outside to inside Na+ flux. These results indicate that Ag+Cl? enhances active sodium transport and that Ag+Cl? binding to specific membrane groups is required for this effect.  相似文献   

7.
Abstract Radioisotope equilibration techniques have been used to determine the intracellular concentration of K+, Na+ and Cl?, together with the unidirectional ion fluxes across the plasmalemma of Porphyra purpurea. Influx and efflux of 42K+, 24Na+ and 36C1? are biphasic, the rapid, initial uptake and loss of tracer from individual thalli being attributable to desorption from extracellular regions. Cellular fluxes are slower and monophasic, cells discriminating in favour of K+ and Cl? and against Na+. A comparison between the equilibrium potential of individual ion species and the measured membrane potential demonstrates that there is an active component of K+ and Cl? influx and Na+ efflux. ‘Active’ uptake and ‘passive’ loss of K+ and Cl? are reduced when plants are kept in darkness, suggesting that a fraction of the transport of K+ and Cl? may be due to ‘exchange diffusion’ (K+/K+ and Cl?/Cl?antiport).  相似文献   

8.
We have previously reported on the biochemical properties of a Na+,K+,2Cl?-cotransport in HeLa cells and here we deal with aspects of its physiological regulation. Na+,K+,2Cl?-cotransport in HeLa cells was studied by 86Rb+ influx and 86Rb+/22Na+ efflux measurements. The effects of rat atrial natriuretic peptide (ANP), isoproterenol, and amino acids on 86Rb+ flux, mediated by the bumet-anide-sensitive Na+, K+, 2Cl?-cotransport system and the ouabain-sensitive Na+/K+-pump, were investigated. ANP reduced bumetanide-sensitive 86Rb+ influx under isotonic as well as under hypertonic conditions. Similar decrease of bumetanide-sensitive 86Rb+ influx was observed in the presence of 8-bromo-cGMP, while neither isoproterenol as a β-receptor agonist nor 8-bromo-cAMP-could alter bumetanide-sensitive 86Rb+ influx. Furthermore, efflux of 86Rb+ and 22Na+ was greatly reduced in the presence of bumetanide and ANP. Together with our recent findings, showing functionally active, high affinity receptors for ANP on HeLa cells (Kort and Koch, Biochim. Biophys. Res. Commun. 168:148–154, 1990), this study indicates that ANP participates in the regulation of the Na+, K+, 2Cl?-cotransport system in HeLa cells. Further measurements revealed that amino acids as present in the growth medium (Joklik's minimal essential medium) and the amino acid derivative α-methyl-aminoisobutyric acid (metAlB, 1 and 5 mM, respectively) also reduced Na+, K+, 2Cl?-cotransport-mediated 86Rb+ uptake and diminished the stimulatory effect of hypertonicity on the cotransporter. In addition, the Na+/K+-pump was markedly stimulated in the presence of amino acids, while neither ANP and 8-Br-cGMP nor isoproterenol and 8-Br-cAMP had a significant effect on the activity of the Na+/K+-pump.  相似文献   

9.
Isolated Malpighian tubules of Locusta reabsorb significant levels of glucose from their lumen back into the bathing fluid (haemolymph). This reabsorption is inhibited by phlorizin, phloretin and ouabain. Both phlorizin and phloretin are found to accumulate in the secreted fluid of the tubules against concentration gradients. Ouabain inhibition is explained in terms of its effect on intracellular Na+ concentrations. A hypothetical model of the role that Na+ may play in glucose reabsorption is presented as a possible explanation of these observations.  相似文献   

10.
In vitro preparations of locust Malpighian tubules can conveniently be made by a new technique in which the alimentary canal to which the tubules attach is removed from the insect and set up in Ringer's solution under liquid paraffin. Such Malpighian tubules will secrete a fluid iso-osmotic to the bathing fluid at a steady rate of about 1 to 2 nl min?1 for some hours. The secreted fluid is rich in potassium ions, the lumen is at a potential positive to that of the bathing solution, and the rate of secretion can be controlled by changing the potassium concentration of the bathing fluid. It seems likely, therefore, that an active transport of potassium drives secretion ny locust Malpighian tubules. The secreted fluid contains an elevated concentration of phosphate ions. The Malpighian tubules will secrete at a high rate in a chloride-free phosphate-based solution. The rate of fluid secretion can be increased by treatment with cyclic AMP but 5-hydroxytryptamine has no such effect.  相似文献   

11.
The kinetics of the light-driven Cl? uptake pump of Synechococcus R-2 (PCC 7942) were investigated. The kinetics of Cl? uptake were measured in BG-11 medium (pHo, 7·5; [K+]o, 0·35 mol m?3; [Na+]o, 18 mol m?3; [Cl?]o, 0·508 mol m?3) or modified media based on the above. Net36Cl? fluxes (?Cl?o,i) followed Michaelis-Menten kinetics and were stimulated by Na+ [18 mol m?3 Na+ BG-11 ?Cl?max= 3·29±0·60 (49) nmol m?2 s?1 versus Na+-free BG-11 ?Cl?max= 1·02±0·13 (54) nmol m?2 s?1] but the Km was not significantly different in the presence or absence of Na+ at pHo 10; the Km was lower, but not affected by the presence or absence of Na+ [Km = 22·3±3·54 (20) mmol m?3]. Na+ is a non-competitive activator of net ?Cl?o,i. High [K+]o (18 mol m?3) did not stimulate net ?Cl?o,i or change the Km in Na+-free medium. High [K+]o (18 mol m?3) added to Na+ BG-11 medium decreased net ?Cl?o,i [18 mol m?3K+ BG-11; ?Cl?max= 2·50±0·32 (20) nmol m?2 s?1 versus BG-11 medium; ?Cl?max= 3·35±0·56 (20) nmol m?2 s?1] but did not affect the Km 55·8±8·100 (40) mmol m?3]. Na+-stimulation of net ?Cl?o,i followed Michaelis-Menten kinetics up to 2–5 mol m?3 [Na+]o but higher concentrations were inhibitory. The Km for Na+-stimulation of net ?Cl?o,i [K1/2(Na+)] was different at 47 mmol m?3 [Cl?]o (K1/2[Na+] = 123±27 (37) mmol m?3]. Li+ was only about one-third as effective as Na+ in stimulating Cl? uptake but the activation constant was similar [K1/2(Li+) = 88±46 (16) mmol m?3]. Br? was a competitive inhibitor of Cl? uptake. The inhibition constant (Ki) was not significantly different in the presence and absence of Na+. The overall Ki was 297±23 (45) mmol m?3. The discrimination ratio of Cl? over Br? (δCl?/δBr?) was 6·38±0·92 (df = 147). Synechococcus has a single Na+-stimulated Cl? pump because the Km of the Cl? transporter and its discrimination between Cl? and Br? are not significantly different in the presence and absence of Na+. The Cl? pump is probably driven by ATP.  相似文献   

12.
Transport of 86Rb+/K+, 22Na+, 36Cl?, and [3H]indole acetic acid (IAA) has been studied on suspension-cultured cells of the parsley, Petroselinum crispum (Mill) Nym. By compartmental analysis two intracellular compartments of K+, Na+, and Cl? have been identified and ascribed to the cytoplasm and vacuole; half-times of exchange were around 200 s and 5 h, respectively. According to the Ussing-Teorell flux equation, active transport is required for the influx into the cytoplasm at the plasmalemma (K+, Cl?) and the tonoplast (K+, Na+, Cl?). The plasmalemma permeability pattern, PK:PNa:PCl=1.00:0.24:0.38, features an increased chloride permeability compared with cells from higher plant tissues. IAA uptake showed an exponential timecourse, was half-maximal after 10 min, and a linear function of the IAA concentration from 10?9 to 10?5 M. IAA and 2,4-dichlorophenoxy acetic acid reduce the apparent influx of K+, Na+, Cl? during the initial 30 min after addition and subsequently accelerate both in- and efflux of these ions. We discuss that auxins could affect the ion fluxes in a complex way, e.g. by protonophorous activity and by control of the hypothetical proton pump.  相似文献   

13.
Summary Models of epithelial salt secretion, involving secondary active transport of Cl [9], locate the K+ conductance of the plasma membrane exclusively in the basolateral membrane, although there is considerable experimental evidence to show that many secretory epithelia do have a significant apical K+ conductance. We have used an equivalent circuit model to examine the effect of an apical K+ conductance on the composition and flow rate of the fluid secreted by an epithelium in which secretion is driven by the secondary active transport of Cl. The parameters of the model were chosen to be similar to those measured in the dog tracheal mucosa when stimulated with adrenaline to secrete. We find that placing a K+ conductance in the apical membrane can actually enhance secretion provided that proportion of the total cell K+ conductance in the apical membrane is not greater than about 60%, the enabling effect on secretion being maximal when the proportion is around 10–20%. We also find that even when the entire cell K+ conductance is located in the apical membrane, the secreted fluid remains relatively Na+ rich. Analysis of the sensitivity of model behavior to the choice of values for the parameters shows that the effects of an apical K+ conductance are enhanced by increasing the ratio of the paracellular resistance to the transcellular resistance.  相似文献   

14.
Cultured epithelial monolayers of MDCK cells grown upon Millipore filter supports and mounted in Ussing chambers for transport studies respond to addition of 5 · 10?7M adrenalin from only the basal bathing solution by an increased short-circuit current, due both to an increased transmonolayer potential difference (basal solution electropositive) and an increased transmonolayer conductance. Measurement of tracer Na+, K+ and Cl? fluxes demonstrate that the adrenalin-stimulated short-circuit current results primarily from basal to apical net Cl? secretion. Half-maximal stimulation of the short-circuit current was observed at (3.1 ± 0.3) · 10?8M adrenalin; the order of potency of adrenergic agonists for short-circuit current stimulation was isoprenalin >adrenalin >noradrenalin, consistent with adrenalin action being mediated by a β-adrenergic receptor. The adrenalin-stimulated short-circuit current was sensitive to inhibition (75%) by basal additions of furosemide (1 · 10?4M); phloretin inhibition (54%, 57%) was observed from both epithelial surfaces. Amiloride (10?4 M) and 4-acetamido-4-isothiocyanostilbene-2, 2′-disulphonic acid (SITS) (10 μM) were ineffective as inhibitors of the adrenalin response. The increased short-circuit current was sensitive to replacement of medium Na+ by choline (87%) and Tris (93%). Li+ was a partially effective substitute cation for Na+ · NO3?, and isethionate were ineffective substitutes for Cl? whereas Br? was partially effective. Partial replacement of medium Na+ by choline gave an upward-curving non-saturable dependence of the adrenalin-stimulated short-circuit current upon [Na]; partial replacement of Cl? by NO3? in contrast gave a saturable increase with a K12 of approx. 65 mM Cl?.  相似文献   

15.
With the aid of a direct microfluorimetric method a dependence of organic onion (fluorescein) transport into proximal tubules of surviving frog kidney on Na+-flow in the opposite direction was studied. It was shown that the complete removal of Na+ from the tubules lumen resulted in inhibition of fluorescein transport of about 30%. After a specific inhibitor of sodium channels, amiloride (10-3M) having been introduced into lumen of the tubules, the fluorescein transport was inhibited to the same extent. Amiloride affects only when Na+ is present in the tubular lumen. S present in the tubular lumen. Strophantin K (5 · 10?5 M), a specific inhibitor of (Na+, K+)-ATPase, reduced fluorescein transport about twice. Substances increasing the 3′,5′-AMP level in cells (theophylline, NaF) and exogenous 3′,5′-AMP inhibited fluorescein transport while substance that decreased the 3′,5′-AMP level intracellularly (carbachol) stimulated it. For realization of these effects Na+ should be present in proximal tubules lumen.Thus, the various effects on the Na+ flow from lumen of the tubules to medium at the level of both the basal and apical membranes alter the rate of organic acid active transport from medium to lumen as a result of changes in the maximum rate of transport (V) with unchanged Km. It is suggested that the system of Na+ extrusion from proximal tubules produces peritubular membrane-side (near the membrane) gradient of Na+ concentration which may be higher than the summary Na+ gradient between the medium and the cytoplasm. The magnitude of this gradient affects the maximal rate value of Na+-dependent organic acid transport. So, there is a double dependence of the active transport system on Na+, and the stages where Na+ is needed are: (1) the formation of a carrier-substrate-Na+ complex and (2) the production of substantial membrane-side Na+ gradient at the expense of Na+ extrusion from the tubules.  相似文献   

16.
Summary Bicarbonate presence in the bathing media doubles Na+ and fluid transepithelial transport and in parallel significantly increases Na+ and Cl intracellular concentrations and contents, decreases K+ cell concentration without changing its amount, and causes a large cell swelling. Na+ and Cl lumen-to-cell influxes are significantly enhanced, Na+ more so than Cl. The stimulation does not raise any immediate change in luminal membrane potential and cannot be due to a HCO 3 -ATPase in the brush border. The stimulation goes together with a large increase in a Na+-dependent H+ secretion into the lumen. All of these data suggests that HCO 3 both activates Na+–Cl cotransport and H+–Na+ countertransport at the luminal barrier.Thiocyanate inhibits Na+ and fluid transepithelial transport without affecting H+ secretion and HCO 3 -dependent Na+ influx. It reduces Na+ and Cl concentrations and contents, increases the same parameters for K+, causes a cell shrinking, and abolishes the lumen-to-cell Cl influx. It enters the cell and is accumulated in the cytoplasm with a process which is Na+-dependent and HCO 3 -activated. Thus, SCN is likely to compete for the Cl site on the cotransport carrier and to be slowly transferred by the cotransport system itself.  相似文献   

17.
The Cl? transport properties of the luminal border of bovine tracheal epithelium have been investigated using a highly purified preparation of apical plasma membrane vesicles. Transport of Cl? into an intravesicular space was demonstrated by (1) a linear inverse correlation between Cl? uptake and medium osmolarity and (2) complete release of accumulated Cl? by treatment with detergent. The rate of Cl? uptake was highly temperature-sensitive and was enhanced by exchange diffusion, providing evidence for a carrier-mediated transport mechanism. Transport of Cl? was not affected by the ‘loop’ diuretic bumetanide or by the stilbene-derivative anion-exchange inhibitors SITS (4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid) and DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid). In the presence of the impermeant cation, tetramethylammonium (TMA+), uptake of Cl? was minimal; transport was stimulated equally by the substitution of either K+ or Na+ for TMA+. Valinomycin in the presence of K+ enhanced further Cl? uptake, while amiloride reduced Na+-stimulated Cl? uptake towards the minimal level observed with TMA+. These results suggest the following conclusions: (1) the tracheal vesicle membrane has a finite permeability to both Na+ and K+; (2) the membrane permeability to the medium counterion determines the rate of Cl? uptake; (3) Cl? transport is not specifically coupled with either Na+ or K+; and, finally (4) Cl? crosses the tracheal luminal membrane via an electrogenic transport mechanism.  相似文献   

18.
The adaptation of microorganisms to life in brines allows two strategies: the accumulation of organic osmoregulators in the cell (as in many moderate halophiles, halomonads in particular) or the accumulation of inorganic ions at extremely high intracellular concentrations (as, for example, in haloanaerobes). To reveal the regularities of osmoregulation in haloalkaliphiles developing in soda lakes, Halomonas campisalis Z-7398-2 and Halomonas sp. AIR-2 were chosen as representatives of halomonads, and Natroniella acetigena, as a representative of haloanaerobes. It was established that, in alkaliphilic halomonads, the intracellular concentrations of inorganic ions are insufficient for counterbalancing the environmental osmotic pressure and balance is attained due to the accumulation of organic osmoregulators, such as ectoine and betaine. On the contrary, the alkaliphilic haloanaerobe N. acetigena employs K+, Na+, and Cl? ions for osmoregulation. High intracellular salt concentrations increasing with the content of Na+ in the medium were revealed in this organism. At a concentration of 1.91 M Na+ in the medium, N. acetigena accumulated 0.83 M K+, 0.91 M Na+, and 0.29 M Cl? in cells, and, with an increase in the Na+ content in the medium to 2.59 M, it accumulated 0.94 M K+, 1.98 M Na+, and 0.89 M Cl?, which counterbalanced the external osmotic pressure and provided for cell turgor. Thus, it was shown that alkaliphilic microorganisms use osmoregulation strategies similar to those of halophiles and these mechanisms are independent of the mechanism of pH homeostasis.  相似文献   

19.
Summary The effect of taurine on the Na+, K+, Cl concentration and distribution in epithelial and compact layers of the human amniotic membrane had been investigated using the Bordeaux nuclear microprobe. Particle induced X-ray emission and Rutherford backscattering spectrometry techniques had been used to provice quantitative measurements. In physiological medium, the monovalent ions concentrations were identical in epithelial and compact layers. The addition of taurine in Hanks' physiological fluid had no effect on Na+ concentration, but decreased K+ and Cl concentration in both layers. The quantitative results were related to electrophysiological observations on the effect of taurine on ionic exchanges through channels and paracellular pathways.  相似文献   

20.
THE AVIAN SALT GLAND   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号