首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Motor patterns during kicking movements in the locust   总被引:2,自引:2,他引:0  
Locusts (Schistocerca gregaria) use a distinctive motor pattern to extend the tibia of a hind leg rapidly in a kick. The necessary force is generated by an almost isometric contraction of the extensor tibiae muscle restrained by the co-contraction of the flexor tibiae (co-contraction phase) and aided by the mechanics of the femoro-tibial joint. The stored energy is delivered suddenly when the flexor muscle is inhibited. This paper analyses the activity of motor neurons to the major hind leg muscles during kicking, and relates it to tibial movements and the resultant forces.During the co-contraction phase flexor tibiae motor neurons are driven by apparently common sources of synaptic inputs to depolarized plateaus at which they spike. The two excitatory extensor motor neurons are also depolarized by similar patterns of synaptic inputs, but with the slow producing more spikes at higher frequencies than the fast. Trochanteral depressors spike at high frequency, the single levator tarsi at low frequency, and common inhibitors 2 and 3 spike sporadically. Trochanteral levators, depressor tarsi, and a retractor unguis motor neuron are hyperpolarized.Before the tibia extends all flexor motor neurons are hyperpolarized simultaneously, two common inhibitors, and the levator trochanter and depressor tarsi motor neurons are depolarized. Later, but still before the tibial movement starts, the extensor tibiae and levator tarsi motor neurons are hyperpolarized. After the movement has started, the extensor motor neurons are hyperpolarized further and the depressor trochanteris motor neurons are also hyperpolarized, indicating a contribution of both central and sensory feedback pathways.Variations in the duration of the co-contraction of almost twenty-fold, and in the number of spikes in the fast extensor tibiae motor neuron from 2–50 produce a spectrum of tibial extensions ranging from slow and weak, to rapid and powerful. Flexibility in the networks producing the motor pattern therefore results in a range of movements suited to the fluctuating requirements of the animal.  相似文献   

3.
Pabla N  Lange AB 《Peptides》1999,20(10):1159-1167
The midgut of the African migratory locust, Locusta migratoria, was found to contain endocrine-like cells that stained positively for locustatachykinin I (Lom TK I)-like immunoreactivity. These cells were distributed in an unequal manner throughout the midgut of the locust, with a greater density of Lom TK I-like immunoreactive endocrine-like cells occurring in the posterior region of the midgut. These singly occurring cells appear elongate with an apical extension projecting toward the midgut lumen and a smaller projection extending towards the midgut basal lamina. No immunoreactive neuronal processes were detected along the midgut wall. Radioimmunoassays revealed that the female midgut contained two to three times more Lom TK I-like material than the male midgut, and radioimmunoassay coupled to high-performance liquid chromatography analysis revealed that at least five locustatachykinin isoforms appear to be present in the midgut. This distribution of Lom TK I-like material suggests possible functional differences in the various regions of the midgut. The role that these cells may play in locust midgut secretory activity and motility remains unknown. However, the addition of synthetic Lom TK I through IV to a ring type midgut muscle preparation stimulated contraction of midgut circular muscles, suggesting a possible physiological role for these peptides. Dose-response curves constructed for Lom TK I-IV revealed that the peptide-induced contractions increased in a dose-dependent manner.  相似文献   

4.
5.
Summary The endocrine cells of the midgut epithelium of the desert locust are found dispersed among the digestive cells and are similar to those of the vertebrate gut. According to their reactivity to silver impregnation techniques and the ultrastructural features of the secretory granules (shape, electron-density, size, and structure) 10 types of endocrine cell have been identified, of which seven are located in the main segment of the midgut or in the enteric caeca, and the other three seem to be present only in the ampullae through which the Malpighian tubules drain into the gut. The endocrine cells have a slender cytoplasmic process that reaches the gut lumen, a feature that supports the receptosecretory nature postulated for this cellular type in insects as well as vertebrates. Antisera directed against mammalian gastrin, CCK, insulin, pancreatic polypeptide and bombesin reacted with some of the endocrine cells. This is the first time that insulin- and bombesin-like immunoreactive cells have been described in the midgut of an insect.  相似文献   

6.
The raidgut of intact larvae of Bombyx mori exhibited active contractile movements. Contraction waves were generated rhythmically at several regions of the midgut. The waves passed in both oral and aboral directions from their sites of origin. Midgut movements were depressed during moulting. The midgut continued to move normally when tetrodotoxin was injected into the larval haemocoel at doses sufficient to paralyze somatic muscle. Ligation of larvae paralyzed with tetrodotoxin behind the second or third body segment resulted in the abolition of the contraction waves in the midgut portion anterior to the ligature. A ligature applied behind other body segments did not hamper midgut motor activity irrespective of whether or not an abdominal ganglion had been extirpated. The frequency of contraction and the rate of food transport in the midgut were increased when larvae were administered serotonin or when their body temperature was raised.  相似文献   

7.
This paper reports the purification of a tachykinin isoform from the midgut of the desert locust, Schistocerca gregaria. One hundred locust midguts were extracted in an acidified methanolic solvent, after which three HPLC column systems were used to obtain a pure peptide. A tachykinin immunoassay was used to monitor all collected fractions. After each purification step the purity of the sample was monitored by MALDI-TOF mass spectrometry. The pure peptide was sequenced by ESI-Qq-oa-TOF mass spectrometry. Edman degradation-based automated microsequencing and chemical synthesis confirmed the sequences. The midgut peptide, GNTKKAVPGFYGTRamide (Scg-midgut-TK), belongs to the tachykinin family with identified members in all vertebrate phyla and some invertebrate phyla: arthropods, annelids and molluscs. Scg-midgut-TK is the first tachykinin purified from midguts of the desert locust Schistocerca gregaria. In comparison to locust brain tachykinins, the midgut tachykinin is N-terminally extended. Similar to neuropeptide gamma, an N-terminally extended mammalian tachykinin, first isolated from rabbit intestine, the present identified locust intestinal tachykinin contains a putative dibasic cleavage site.  相似文献   

8.
9.
1.  Two campaniform sensilla (CS) on the proximal tibia of a hindleg monitor strains set up when a locust prepares to kick, or when a resistance is met during locomotion. The connections made by these afferents with interneurones and leg motor neurones have been investigated and correlated with their role in locomotion.
2.  When flexor and extensor tibiae muscles cocontract before a kick afferents from both campaniform sensilla spike at frequencies up to 650 Hz. They do not spike when the tibia is extended actively or passively unless it encounters a resistance. The fast extensor tibiae motor neurone (FETi) then produces a sequence of spikes in a thrusting response with feedback from the CS afferents maintaining the excitation. Destroying the two campaniform sensilla abolishes the re-excitation of FETi.
3.  Mechanical stimulation of a single sensillum excites extensor and flexor tibiae motor neurones. The single afferent from either CS evokes EPSPs in the fast extensor motor neurone and in certain fast flexor tibiae motor neurones which follow each sensory spike with a central latency of 1.6 ms that suggests direct connections. The input from one receptor is powerful enough to evoke spikes in FETi. The slow extensor motor neurone does not receive a direct input, although it is excited and slow flexor tibiae motor neurones are unaffected.
4.  Some nonspiking interneurones receive direct connections from both afferents in parallel with the motor neurones. One of these interneurones excites the slow and fast extensor tibiae motor neurones probably by disinhibition. Hyperpolarization of this interneurone abolishes the excitatory effect of the CS on the slow extensor motor neurone and reduces the excitation of the fast. The disinhibitory pathway may involve a second nonspiking interneurone with direct inhibitory connections to both extensor motor neurones. Other nonspiking interneurones distribute the effects of the CS afferents to motor neurones of other joints.
5.  The branches of the afferents from the campaniform sensilla and those of the motor neurones and interneurones in which they evoke EPSPs project to the same regions of neuropil in the metathoracic ganglion.
6.  The pathways described will ensure that more force is generated by the extensor muscle when the tibia is extended against a resistance. The excitatory feedback to the extensor and flexor motor neurones will also contribute to their co-contraction when generating the force necessary for a kick.
  相似文献   

10.
The midgut of Stomoxys calcitrans is subdivided into several zones. The last of these, the lipoid zone is responsible for the absorption of digestion products. The ultrastructure of the lipoid zone cells is described. Analysis of E.M. autoradiographs of 3H-label derived from absorbed fatty acids shows a strong non-random distribution of label among the various cellular organelles. The majority of label in the lipoid zone cells is incorporated into triglycerides (ca. 60%) and phospholipids (ca. 20%). Triglyceride and phospholipid producing acyltransferases have been localized in the Golgi bodies. After a blood meal the Golgi bodies produce lipoid spheres for the temporary storage of fats and these spheres disappear after completion of meal digestion. Association of lipoid spheres and elements of endoplasmic reticulum is reported and it is suggested that this is the means by which the contents of the spheres are mobilized. The mitochondrial/basal infoldings junctional complex carries out the active concentration of 3H-label and may be important in the movement of fats from the cell to the haemolymph. Vesicles ca. 100 nm in diameter are reported in the extracellular space of the basal infoldings.A tentative proposal for a possible transcellular route (across the lipoid zone cell) for absorbed lipids is made based on the results reported in this communication.  相似文献   

11.
Intestinal parasitism and nutrient absorption   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
ABSTRACT. When imposed movements were applied to one or both mandibles of the desert locust, Schistocerca gregaria , the other mouthparts moved in synchrony with the mandibles. This occurred in the presence or absence of food, and when the mandibles were driven at a higher or lower frequency than that seen during normal feeding. Electromyogram recordings from the mandibular closer muscles revealed bursts of activity at the same frequency as the imposed movement. This activity occurred during mandibular closing. Burst length was a function of driving wavelength. At low driving frequencies (less than 0.5 Hz), smaller bursts were seen prior to the longer closing burst; a series of similar small bursts was seen when the mandibles were held in the open position. When one mandible was driven, closer muscle activity was largely confined to that side. In the presence of food, however, activity was seen in both closer muscles. A possible mechanism for this is described. After destruction of the campaniform sensilla on the ventral surface of the mandibles, the bursts of activity in the mandibular closers, seen when the mandibles were held open, were replaced by continuous activity. This suggests that the function of these sensilla is to inhibit motor output to the closer muscles when the tension becomes high. When feeding on relatively incompressible food the closer muscle burst length increased, although chewing frequency did not alter. This effect was also produced by loading the mandibles artificially. A model for the feedback control of this behaviour is proposed.  相似文献   

14.
15.
The distribution of the NPY-like substances in the nervous system and the midgut of the migratory locust, Locusta migratoria and in the brain of the grey fleshfly, Sarcophaga bullata was determined by immunocytochemistry using an antiserum directed against synthetic porcine NPY. The peroxidase-antiperoxidase procedure revealed that NPY immunoreactive cell bodies and nerve fibers were observed in the brain, optic lobes, corpora cardiaca, suboesophageal ganglion and ventral nerve cord of the locust and in the brain, optic lobes and suboesophageal ganglion of the fleshfly. In the locust midgut, numerous endocrine cells and nerve fibers penetrating the outer musculature contained NPY-like immunoreactivity. The concentrations of NPY immunoreactive material in acetic acid extracts of locust brain, optic lobes, thoracic ganglia, ovaries and midguts was measured using a specific radioimmunoassay technique. The dilution curves of the crude tissue extracts were parallel to the standard curve. The highest amount of NPY-like immunoreactivity was found in the locust ovary and midgut. Reverse-phase high-performance liquid chromatography (RP-HPLC) and radioimmunoassay were used to characterize the NPY-like substances in the locust brain and midgut. HPLC-analysis revealed that NPY-immunoreactivity in the locust brain eluted as three separate peaks. The major peak corresponded to a peptide less hydrophobic than synthetic porcine NPY. RP-HPLC analysis of midgut extracts revealed the presence of an additional NPY-immunoreactive peak which had a retention time similar to the porcine NPY standard. The present data show the existence of a widespread network of NPY immunoreactive neurons in the nervous system of the locust and the fleshfly. Characterization of the immunoreactive substances indicates that peptides similar but not identical to porcine NPY are present in the central nervous system and midgut of insects.  相似文献   

16.
1. Several insecticides were tested for their ability to induce a water deregulation in the larval migratory locust. All of them provoked an accelerated dehydration (when compared to sham-operated insects). Deltamethrin and baygon were the most potent.2. This enhanced dehydration due to deltamethrin in adult locust resulted from an increase in the water loss through the feces. This increase was not due to a direct effect of deltamethrin on urine production by the Malpighian tubules but to a hormonal deregulation.3. Intoxicated insects produced large amounts of the vasopressin-like insect diuretic hormone. This higher synthesis activity occurs within the hours following the insecticide injection and is accompanied by an increase in water loss.4. These hormonal and metabolic modifications are transient. Hormonal level and diuresis rate both return to the basal levels 7 hr after the insecticide injection.  相似文献   

17.
Food mixing strategies were compared in the cryptically coloured, relatively sedentary `solitarious' and the highly mobile, conspicuously coloured `gregarious' phases of the desert locust, Schistocerca gregaria. Based on phase related differences in behaviour and nutritional regulatory responses, we predicted that solitarious nymphs, compared to gregarious nymphs, would move less between nutritionally complementary foods, particularly as the distance between the foods increased. We manipulated the nutritional composition [protein (p) and digestible carbohydrate (c) content] of two foods in an experimental arena and varied the distance between the foods using a factorial experimental design. Results indicated that in general, solitarious nymphs showed greater fidelity to individual food dishes than did gregarious insects (i.e., they concentrated their feeding mainly on one dish). However, results also demonstrated that for both phases fidelity to a particular food dish increased as the distance between the dishes increased, and that the number of switches between dishes decreased with increasing distance. In the smallest arenas, though, gregarious nymphs switched more frequently between the two food dishes than solitarious nymphs, even when the two dishes contained the same, near-optimal food (p18:c24). When challenged by having the two dishes either placed furthest apart (2 m) or more divergent in nutritional composition (p29:c13 vs. p7:c35), insects of both phases regulated protein intake more strongly than carbohydrate intake, by eating more from the dish containing higher-protein food.  相似文献   

18.
Fabian L  Forer A 《Protoplasma》2007,231(3-4):201-213
Summary. We tested whether the mechanisms of chromosome movement during anaphase in locust (Locusta migratoria L.) spermatocytes might be similar to those described for crane-fly spermatocytes. Actin and myosin have been implicated in anaphase chromosome movements in crane-fly spermatocytes, as indicated by the effects of inhibitors and by the localisations of actin and myosin in spindles. In this study, we tested whether locust spermatocyte spindles also utilise actin and myosin, and whether actin is involved in microtubule flux. Living locust spermatocytes were treated with inhibitors of actin (latrunculin B and cytochalasin D), myosin (BDM), or myosin phosphorylation (Y-27632 and ML-7). We added drugs (individually) during anaphase. Actin inhibitors alter anaphase: chromosomes either completely stop moving, slow, or sometimes accelerate. The myosin inhibitor, BDM, also alters anaphase: in most cases, the chromosomes drastically slow or stop. ML-7, an inhibitor of MLCK, causes chromosomes to stop, slow, or sometimes accelerate, similar to actin inhibitors. Y-27632, an inhibitor of Rho-kinase, drastically slows or stops anaphase chromosome movements. The effects of the drugs on anaphase movement are reversible: most of the half-bivalents resumed movement at normal speed after these drugs were washed out. Actin and myosin were present in the spindles in locations consistent with their possible involvement in force production. Microtubule flux along kinetochore fibres is an actin-dependent process, since LatB completely removes or drastically reduces the gap in microtubule acetylation at the kinetochore. These results suggest that actin and myosin are involved in anaphase chromosome movements in locust spermatocytes. Correspondence: A. Forer, Biology Department, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.  相似文献   

19.
20.
In the larval midgut of Bombyx mori a K(+)-dependent transporter for leucine and amino acids with a hydrophobic side chain is responsible for the absorption of most essential amino acids. We investigated if a modulation of its activity occurred as a result of starvation or after hormonal treatments. We measured amino acid uptake in brush border membrane vesicles (BBMV) purified from the anterior-middle (AM) and posterior (P) regions of the midgut in fifth instar larvae. Silkworms were either starved or topically treated with low dosages of fenoxycarb, a molecule often used as a juvenile hormone mimic. The maximal uptake value of K(+)-driven leucine transport was increased in BBMV of AM- and P-midgut regions of starved larvae. The initial uptake rates of serine and glutamine, two amino acids transported by the same cotransporter as leucine, were also increased. Leucine kinetics proved that V(max) was the kinetic parameter modified by starvation in both midgut regions. Topical applications of fenoxycarb at a dose of 2.5 fg/larva immediately after the fourth ecdysis, induced an increase of leucine initial uptake rates and of intravesicular accumulation of leucine in both AM- and P-BBMV. Kinetic analysis of leucine uptake indicated again that V(max) was increased in BBMV from both midgut regions in treated larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号