首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six types of hemocytes were found in Agallia constricta leafhoppers: plasmatocytes, spherule cells, granular hemocytes, adipohemocytes, oenocytoids, and prohemocytes. Plasmatocytes, spherule cells, and granular hemocytes accounted for 90–95% of all hemocytes in numphs and adult leafhoppers. As the insect aged from second- and third-instar nymphs to 7- and 8-week-old adults, there was a significant decrease in plasmatocytes in healthy leafhoppers compared to wound tumor virus-infected insects. In contradistinction, there were more granular and spherule hemocytes in healthy leafhoppers than in virus-infected ones as the insects aged. In general, there were more prohemocytes in infected than in healthy leafhoppers. Plasmatocytes from 4- to 8-week-old, infected leafhoppers contained large irregularly shaped, cytoplasmic inclusions. Electron microscopy of these cells showed that the inclusions were either large accumulations of wound tumor virus particles or virus-free electron dense bodies.  相似文献   

2.
为了阐明幼虫密度对草地螟Loxostege sticticalis L.(鳞翅目: 螟蛾科)细胞免疫能力的影响, 本研究调查了在活体灰菜植株上1,5,10和20头/瓶(900 mL)4种密度条件下的其5龄幼虫血细胞种类、数量和组成。结果表明: 草地螟幼虫血淋巴中有原血细胞、浆血细胞、 颗粒血细胞、珠血细胞和类绛色血细胞等5种(类)血细胞。血细胞总数、 浆血细胞、颗粒血细胞数量随幼虫密度的增加而显著递增, 但原血细胞、珠血细胞和类绛色血细胞数量在幼虫密度间的差异不明显;各种血细胞所占血细胞总数的比例在4个密度中的排序相同, 但10和20头/瓶密度下的浆血细胞比例显著高于1头/瓶的,其余4种血细胞的比例在不同密度之间无显著差异。可见, 幼虫密度主要是通过影响草地螟幼虫浆血细胞和颗粒血细胞的数量及血细胞总数, 从而影响草地螟的细胞免疫能力。  相似文献   

3.
Galleria mellonella and Pieris brassicae larvae were injected with a standardized dose of killed Bacillus cereus and other bacteria and the reactions of hemocytes followed in the first 24 hr by dissection and histology. Nodules formed in all insects injected with nonpathogens, but a pathogen, Staphylococcus aureus, failed to provoke this reaction. Within 5 min, clumps consisting of granular hemocytes, plasmatocytes, and bacteria were found attached to the internal surfaces of the insects. In the following hours, the cells comprising the clumps broke down and merged with a melanizing acellular substance, and the necrosing masses became encapsulated by plasmatocytes to form mature nodules. The role of granular hemocytes in the formation of the initial cell/bacteria aggregates is discussed along with the possible importance of nodules to the cellular defense reactions of insects.  相似文献   

4.
In this study, we examined cellular immune responses in the flesh fly, Sarcophaga bullata, when parasitized by the ectoparasitoid Nasonia vitripennis. In unparasitized, young pharate adults and third instar, wandering larvae of S. bullata, four main hemocyte types were identified by light microscopy: plasmatocytes, granular cells, oenocytoids, and pro-hemocytes. Parasitism of young pharate adults had a differential effect on host hemocytes; oenocytoids and pro-hemocytes appeared to be unaltered by parasitism, whereas adhesion and spreading behavior were completely inhibited in plasmatocytes and granular cells by 60 min after oviposition. The suppression of spreading behavior in granular cells lasted the duration of parasitism. Plasmatocytes were found to decline significantly during the first hour after parasitism and this drop was attributed to cell death. Melanization and clotting of host hemolymph did not occur in parasitized flies, or the onset of both events was retarded by several hours in comparison to unparasitized pharate adults. Hemocytes from envenomated flies were altered in nearly identical fashion to that observed for natural parasitism; the total number of circulating hemocytes declined sharply by 60 min post-envenomation, the number of plasmatocytes declined but not granular cells, and the ability of plasmatocytes and granular cells to spread when cultured in vitro was abolished within 1 h. As with parasitized hosts, the decrease in plasmatocytes was due to cell death, and inhibition of spreading lasted until the host died. Isolated crude venom also blocked adhesion and spreading of these hemocyte types in vitro. Thus, it appears that maternally derived venom disrupts host immune responses almost immediately following oviposition and the inhibition is permanent. The possibility that this ectoparasite disables host defenses to afford protection to feeding larvae and adult females is discussed.  相似文献   

5.
A Kazal type serine proteinase SPIPm2 is abundantly expressed in the hemocytes and shown to be involved in innate immune response against white spot syndrome virus (WSSV) in Penaeus monodon. The SPIPm2 is expressed and stored in the granules in the cytoplasm of semigranular and granular but not the hyaline hemocytes. Upon WSSV challenge and progression of infection, the SPIPm2 was secreted readily from the semigranular and granular hemocytes. The more they secreted the SPIPm2, the less they were distinguishable from the hyaline cells. The WSSV-infected cells were either semigranular or granular hemocytes or both and depleted of SPIPm2. The rSPIPm2 was able to temporarily and dose-dependently neutralize the WSSV and protect the hemocytes from viral infection judging from the substantially less expression of WSSV late gene VP28. The antiviral activity was very likely due to the binding of SPIPm2 to the components of viral particle and hemocyte cell membrane.  相似文献   

6.
Light and electron-microscopic observations of the blood-cells (hemocytes) of the wax-moth Galleria mellonella showed that hemolymph coagulation was initiated by the rapid release of material from the granular cells. During incubation for short terms in vitro these cells showed progressive degranulation as material derived from the granules was discharged into the hemolymph. Attempts to determine the nature of this material by staining with ruthenium red proved mainly unsuccessful. When challenged with bacteria in vitro the granular cells failed to phagocytose these particles and instead the bacteria became embedded in the granular material surrounding these cells. The mode of coagulation reported here is compared with previous reports of the role of invertebrate hemocytes in hemolymph clotting.  相似文献   

7.
为研究大肠杆菌Escherichia coli侵染引发亚洲玉米螟Ostrinia furnacalis Guenée幼虫免疫应激反应的机理,本实验测定了分别注射生理盐水以及3×103,3×104,3×105和3×106个细胞/mL大肠杆菌后亚洲玉米螟5龄幼虫血淋巴中血细胞总数(THC)、颗粒细胞和浆血细胞数量,血清中酚氧化酶(PO)、谷胱甘肽过氧化物酶(GSH-px)、谷胱甘肽还原酶(GR)和谷胱甘肽-S-转移酶(GST)的活性,通过流式细胞仪分析了血细胞活性氧自由基(ROS)水平的动态变化。结果表明:与对照组相比,注射3×105和3×106个细胞/mL大肠杆菌细胞后12 h,可引起亚洲玉米螟5龄幼虫THC及浆血细胞、颗粒细胞数量明显上升(P<0.01),同时应激产生大量ROS。3×104,3×105和3×106个细胞/mL大肠杆菌3个不同浓度处理组均引起幼虫体内PO活性显著升高(P<0.01),诱导幼虫血清中GSH-px,GST及GR的活性上升(P<0.01)。这些结果表明, 亚洲玉米螟幼虫受到大肠杆菌侵染后,其血淋巴细胞免疫和体液免疫能力受到显著影响, 可诱导血清中GSH-px,GST和GR活性升高以清除过多的ROS, 防止其毒害。  相似文献   

8.
The interactions between the Diacrisia virginica granulosis virus (DGV) and the Hyphantria cunea baculovirus isolates were determined, utilizing defined differences between the time-mortality responses of these viruses fed to H. cunea larvae. The DGV, having a prolonged incubation period, when given an advantage in time or in the number of capsules, was able to prevent the expression of the more lethal H. cunea granulosis virus (HcGV) isolate. The time-mortality response of test larvae simultaneously fed equivalent dosages of HcGV and DGV was intermediate to that achieved with HcGV alone or DGV alone. Larvae infected with the DGV isolate were still susceptible to double infection by the nucleopolyhedrosis virus. The time-mortality response demonstrated that the development of nucleopolyhedrosis was only partly inhibited by preinfecting the test larvae with the DGV isolate.  相似文献   

9.
We have constructed a modified Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) to express the green fluorescent protein (GFP) under the polyhedrin promoter and used it to study the infection process of AcMNPV in Trichoplusia ni larvae. T. ni larvae that ingested the virus showed localized expression of GFP in the midgut epithelial cells and the hemocytes at 12 h post infection (hpi). The presence of GFP-related fluorescence in the midgut columnar cells indicated that the virus was not only replicating, but also synthesizing the late viral proteins. Studies using the transmission electron microscope showed that the virus infected the midgut columnar cells. At the same time a proportion of the parental virus travelled through the midgut epithelial layer, possibly utilizing the plasma membrane reticular system, entered the hemocoel and infected the hemocytes. This resulted in the simultaneous infection of the midgut epithelial cells and the hemocytes. Subsequently, the budded virus (BV) released from the infected hemocytes into the hemolymph caused secondary infection within the tracheal epithelial cells. The virus then rapidly spread through the tracheal system allowing the infection of a variety of other tissues such as the epidermis and the fat body.  相似文献   

10.
Molluscs are invertebrates of great relevance for economy, environment and public health. The numerous studies on molluscan immunity and physiology registered an impressive variability of circulating hemocytes. This study is focused on the first characterization of the circulating hemocytes of the freshwater gastropod Pomacea canaliculata, a model for several eco-toxicological and parasitological researches.Flow cytometry analysis identified two populations of hemocytes on the basis of differences in size and internal organization. The first population contains small and agranular cells. The second one displays major size and a more articulated internal organization. Light microscopy evidenced two principal morphologies, categorized as Group I (small) and II (large) hemocytes. Group I hemocytes present the characteristics of blast-like cells, with an agranular and basophilic cytoplasm. Group I hemocytes can adhere onto a glass surface but seem unable to phagocytize heat-inactivated Escherichia coli. The majority of Group II hemocytes displays an agranular cytoplasm, while a minority presents numerous granules. Agranular cytoplasm may be basophilic or acidophilic. Granules are positive to neutral red staining and therefore acidic. Independently from their morphology, Group II hemocytes are able to adhere and to engulf heat-inactivated E. coli. Transmission electron microscopy analysis clearly distinguished between agranular and granular hemocytes and highlighted the electron dense content of the granules. After hemolymph collection, time-course analysis indicated that the Group II hemocytes are subjected to an evident dynamism with changes in the percentage of agranular and granular hemocytes. The ability of circulating hemocytes to quickly modify their morphology and stainability suggests that P. canaliculata is endowed with highly dynamic hemocyte populations able to cope with rapid environmental changes as well as fast growing pathogens.  相似文献   

11.
A disease causing death in Lacanobia oleracea (Lepidoptera: Noctuidae) occurring in glasshouses in Scotland was shown to be caused by a granulosis virus (GV). Structural properties of the virus were examined by electron microscopy, immunodiffusion, polyacrylamide gel electrophoresis, and restriction endonuclease analysis and compared with an isolate of GV from L. oleracea obtained from France. The two isolates were structurally very similar but could be distinguished by analysis of EcoRI digests of their DNAs. Bioassays of the virus gave LD50 values from 104.3 capsules for second-instar larvae to 106.6 capsules for fifth-instar larvae. The French isolate was bioassayed in third-instar larvae and was not found to differ significantlyfrom the Scottish isolate. Two small glasshouse trials using the virus to control artificial infestations of L. oleracea indicated that high-volume sprays of virus at 108 to 109 capsules/ml achieved good control. An alternative strategy using much smaller amounts of virus to control the insect is discussed.  相似文献   

12.
In vertebrates, hematopoiesis is regulated by inductive microenvironments (niches). Likewise, in the invertebrate model organism Drosophila melanogaster, inductive microenvironments known as larval Hematopoietic Pockets (HPs) have been identified as anatomical sites for the development and regulation of blood cells (hemocytes), in particular of the self-renewing macrophage lineage. HPs are segmentally repeated pockets between the epidermis and muscle layers of the larva, which also comprise sensory neurons of the peripheral nervous system. In the larva, resident (sessile) hemocytes are exposed to anti-apoptotic, adhesive and proliferative cues from these sensory neurons and potentially other components of the HPs, such as the lining muscle and epithelial layers. During normal development, gradual release of resident hemocytes from the HPs fuels the population of circulating hemocytes, which culminates in the release of most of the resident hemocytes at the beginning of metamorphosis. Immune assaults, physical injury or mechanical disturbance trigger the premature release of resident hemocytes into circulation. The switch of larval hemocytes between resident locations and circulation raises the need for a common standard/procedure to selectively isolate and quantify these two populations of blood cells from single Drosophila larvae. Accordingly, this protocol describes an automated method to release and quantify the resident and circulating hemocytes from single larvae. The method facilitates ex vivo approaches, and may be adapted to serve a variety of developmental stages of Drosophila and other invertebrate organisms.  相似文献   

13.
The hemocytes of a genetically induced, temperature-sensitive lethal mutation of Drosophila, Tum1, were examined both quantitatively and qualitatively during the third larval instar. At the tumor-permissive temperature, 29°C, there was a fourfold increase in the concentration of circulating hemocytes in mutant larvae as compared to control. Additionally, the relative frequency of lamellocytes was 30 times greater in Tum1 larvae than Basc in the early third instar. However, the severity of this abnormality gradually diminished as Tum1 approached pupariation; though high frequencies of lamellocytes were always present. At the tumor-restrictive temperature (15°C) the concentration of circulating hemocytes was over twice that found at 29°C for Tum1 larvae, and did not change during the course of third instar. However, in contrast to 29°C there was no abnormal increase in the frequency of lamellocytes at the tumor-restrictive temperature. Control larvae had equivalent concentrations of hemocytes at both temperatures. In one of two temperature shift experiments, Tum1 larvae shifted from 15° to 29°C at the beginning of third instar expressed the abnormal hemocyte concentration and differentiation associated with larvae raised continuously at 29°C. In addition, Tum1 larvae shifted from 29° to 15°C expressed reduced abnormalities of hemocyte differentiation, e.g., with fewer lamellocytes in circulation. The possibility of a temperature-sensitive period for the activation of the Tum1 gene is discussed.  相似文献   

14.
The number of larvae containing polyhedra increased when larvae of Adoxophyes orana and Barathra brassicae were fed on polyhedra of nuclear polyhedrosis virus (NPV) of the reciprocal species. Comparison of restriction endonuclease EcoRI cleavage patterns of DNA isolated from polyhedra used as inocula and from polyhedra obtained after cross-inoculation showed that cross infection did not occur. The observations indicate that latent viruses were activated in both insects. Activation of the A. orana latent NPV with polyhedra of a cytoplasmic polyhedrosis virus (CPV) of B. brassicae, and cross-inoculation with an extract prepared from healthy larvae indicated that an activating agent does not have to be a component of nuclear polyhedra.  相似文献   

15.
16.
Insect hemocytes play a major role in developmental processes where they disassociate and rebuild metamorphosing tissues while undergoing physiological changes themselves. We identified hemocyte changes from the last larval to the beginning of the pupal stage of the tobacco hornworm, Manduca sexta. Larval and pupal hemocytes behaved differently in a 40% Percoll density gradient. Larval granular cells were found in almost all density layers, pupal granular cells were abundant in high density layers; larval plasmatocytes occurred in dense layers, pupal plasmatocytes became enriched in less dense layers of the gradient. Using a panel of monoclonal antibodies generated against purified hemocytes, several different antibody binding patterns were identified. Quantitative differences in staining intensities were observed more often than qualitative changes, e.g. a loss or a gain of staining. Both phenomena were related to both plasmatocytes and granular cells. The distribution of the corresponding antigens in tissues was tested on cross sections of larvae and pupae as well as in Western blot analyses using organ homogenates. Several antibodies were specific for hemocytes only, among which two antibodies bound to molecules of the hematopoietic organ. Other antibodies had an additional reactivity to other tissues, mainly to the basal lamina.  相似文献   

17.
颈双缘姬蜂毒液对寄主小菜蛾的免疫抑制作用   总被引:2,自引:0,他引:2  
对颈双缘姬蜂Diadromus collaris (Gravenhorst)及其毒液引起寄主小菜蛾Plutella xylostella的一些生理效应进行了研究。结果表明,颈双缘姬蜂寄生寄主后可引起寄主小菜蛾蛹总血细胞及浆血细胞和颗粒血细胞数量的上升。寄生后1天观察,血细胞延展行为受到影响,表现在颗粒血细胞放射状丝的产生及浆血细胞伪足的形成受到抑制。通过毒液对寄主离体幼虫血细胞延展行为、形态及活性影响的研究,发现毒液抑制了寄主离体浆血细胞的延展,但对颗粒血细胞的影响不明显;毒液引起寄主浆血细胞和颗粒血细胞的破裂和死亡,毒液对寄主幼虫血淋巴酚氧化酶活性有一定的抑制作用,当反应至40、60及80 min时,毒液处理和未经毒液处理的寄主血淋巴在490 nm处的吸光值差异比较明显。对毒液蛋白成分的聚丙烯酰胺凝胶电泳分析发现,毒液中有9种多肽,分子量介于9~50.2 kD,其中50.2、30.5、28.2、25.1 和12.6 kD的多肽含量较高, 与其他蜂毒液的一些作用已知的蛋白条带相似,因而推测它们同样具有免疫及发育抑制作用。结果证明颈双缘姬蜂毒液能破坏寄主细胞及体液因子调节的免疫反应。  相似文献   

18.
The pathology and virulence of a naturally occurring entomopoxvirus of the lesser cornstalk borer (Elasmopalpus lignosellus) were studied in the laboratory. Diseased larvae appeared red and white, as opposed to the normal blue-green and brown color of healthy larvae. Chronic disease protracted the larval life span up to 40 days beyond normal. Infection appeared to be restricted to the hemocytes and the fat body cells. The LC50 for 1st instars was 9 spheroids; for 3rd and 4th instars 93 spheroids; and for 5th and 6th instars, ca. 700 spheroids.  相似文献   

19.
Using ammonium sulphate precipitation, Blue-Sepharose CL-6B, Phenyl-Sepharose CL-4B, prophenoloxidase (PPO) was isolated and purified from hemolymph of Ostrinia furnacalis larvae. This zymogen was a heterodimer, and composed of two subunits with the relative molecular mass ranging from 66.2 kD to 97.4 kD determined by SDS-PAGE. Western blotting and indirect immunofluorescence test showed that PPO was present in integument, hemolymph plasma and cell membrane of granular hemocytes and oenocytoids of O. furnacalis larvae.  相似文献   

20.
Cotesia glomerata L. (Hymenoptera: Braconidae) is a parasitoid of early instar larvae of Pieris brassicae L. (Lepidoptera: Pieridae). Late instars of P. brassicae can more often overcome parasitization by hemocytic encapsulation of C. glomerata eggs. Short-term hemocyte responses to parasitization were examined in third and fourth instar larvae of P. brassicae. Total and differential hemocyte counts did not differ between parasitized and unparasitized host larvae. A rapid, but temporary decrease of total hemocyte as well as plasmatocyte numbers was observed immediately after oviposition. Numbers of hemocytes adhering to tissues were shown to be the same in untreated, wounded and parasitized P. brassicae larvae by tracing hemocytes with monoclonal antibodies as markers. The in vitro spreading ability of hemocytes from unparasitized third and fourth instar larvae was lower than that of the last instar's; parasitization, however, had no influence on hemocyte spreading. We therefore suggest that the higher parasitization success of C. glomerata in earlier instars of P. brassicae is mainly due to the low spreading ability of the hemocytes. Abbreviations: ACS – anticoagulant saline; BSA – bovine serum albumin; DABCO – 1,4-diazabicyclo-[2,2,2]-octane; DHC – differential hemocyte count; FITC – fluorescein isothiocyanate; GR – granular cells; LPS – lipopolysaccharide; mAb – monoclonal antibody; OE – oenocytoids; PL – plasmatocytes; PRO – prohemocytes; PS – Pieris saline; PVP – polyvinylpyrrolidone; TBS – tris-buffered saline; THC – total hemocyte count.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号