首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The responsiveness of the human mammary carcinoma cell line MCF-7 to estradiol and tamoxifen treatment has been studied in different culture conditions. Cells from exponentially growing cultures were compared with cells in their initial cycles after replating from confluent cultures ("confluent-log" cells). It has been observed that estradiol stimulation of tritiated thymidine incorporation decreases with cell density and that "confluent-log" cells are estrogen unresponsive for a period of four cell cycles in serum-free medium conditions. On the other hand, growth of cells replated from exponentially growing, as well as from confluent cultures, can be inhibited by tamoxifen or a combined treatment with tamoxifen and the progestin levonorgestrel. This growth inhibitory effect can be rescued by estradiol when cells are replated from exponentially growing cultures. The growth inhibitory effect cannot be rescued by estradiol alone (10(-10) to 10(-8) M) when cells are replated from confluent cultures. In this condition, the addition of steroid depleted serum is necessary to reverse the state of estradiol unresponsiveness. Serum can be replaced by high density lipoproteins but not by low density lipoproteins or lipoprotein deficient serum. The present data show that estradiol and HDL interact in the control of MCF-7 cell proliferation.  相似文献   

2.
Employing defined media conditions, the insulin sensitivities of mouse mammary gland epithelial cells in primary culture and MCF-7 human mammary epithelial cells were determined. Insulin stimulated the rates of (3H] uridine incorporation into RNA and [3H] leucine incorporation into protein in both primary mouse mammary gland epithelial cell cultures and MCF-7 cell cultures at concentrations approximating the dilution endpoint of the hormone (10-21 M). Insulin stimulated the rate of [3H] thymidine incorporation into DNA in primary mouse mammary gland epithelial cells at the dilution endpoint concentrations. However, MCF-7 cells required insulin concentrations 100-1000-times that necessary in mouse mammary epithelial cultures to elicit an increased rate of [3H] thymidine incorporation into DNA. Evidence is presented which suggests that the increased rates of uptake of 3H- uridine, [3H] thymidine and [3H] leucine into their respective precursor pools is not responsible for the apparent stimulation of RNA, DNA and protein synthesis.  相似文献   

3.
Summary We describe the in vitro influence of 3,5,3′-triiodo-l-thyronine (T3),l-thyroxine (T4), a thyroid-stimulating hormone (TSH), and/or estradiol (E2: chosen as the control of the methodology) on the cell kinetics (cell distribution in the S+G2+M phases) of mouse MXT and human MCF-7 mammary cancer cells. Experiments were performed by means of a cell image processor, analyzing MCF-7 or MXT cells that had been grown on glass cover slips and whose nuclei had been stained by the Feulgen reaction, which is selective and quantitative (stoichiometric) with respect to DNA. We show that T3, T4, and TSH at 0.01 μM dramatically stimulate the cell kinetics of the MXT mouse and the MCF-7 human mammary cancer cell lines. Indeed, the three hormones bring about a significant transient increase in the S+G2+M fraction as does E2. Furthermore, our data indicate that E2 and TSH are antagonistic with regards to MXT or MCF-7 cell kinetics. This work is supported by grants awarded by the IRSIA and the Fonds de la Recherche Scientifique Médicale (FRSM, Belgium).  相似文献   

4.
Linoleic acid, an omega-6 unsaturated fatty acid, stimulated growth of the MDA-MB-231 and MCF-7 human breast cancer cell lines in culture. Responses of the estrogen-independent MDA-MB-231 cells both in serum-free medium and with 1% fetal bovine serum added were positively correlated with linoleic acid concentration over the entire range examined (5-750 ng/ml). Growth stimulation of the estrogen-responsive MCF-7 cell line was maximal at a LA concentration of 500 ng/ml when cultured in 1% fetal bovine serum-containing medium with added estradiol. Linoleic acid had no mitogenic effect on three human cancer cell lines derived from sites other than breast, or on untransformed 3T3 cells.  相似文献   

5.
Leptin mediates a proliferative response in human MCF7 breast cancer cells   总被引:22,自引:0,他引:22  
Obesity is a risk factor of breast cancers. As leptin, a hormone mainly secreted by white adipocytes, elicits proliferative effects in some cell types, we tested the hypothesis that leptin could influence human breast cancer MCF-7 cell growth. Here we show that MCF-7 cells express leptin receptors and respond to human recombinant leptin by STAT3 and p42/p44 MAPkinase activations and by increased proliferation. These findings suggest that leptin could act in vivo as a paracrine/endocrine growth factor towards mammary epithelial cells thus contributing to explain why obesity is a risk factor of developing breast cancers.  相似文献   

6.
The MCF-7 human breast cancer cell line responds to estradiol stimulation in vitro by increased proliferation only if prolonged subcultures in dextran-coated charcoal-treated fetal calf serum have been made previously. This growth stimulation is not obtained when cells are grown in medium containing 5% untreated fetal calf serum. We describe here the culture conditions under which we obtain a reproducible estradiol effect on cell growth.  相似文献   

7.
Regulation of breast tumor proliferation depends in a large part on a variety of hormones and growth factors. In this report we show that estrogen and antiestrogen modulate epidermal growth factor-receptor (EGF-R) level in the human breast cancer MCF-7 cells with opposite mechanisms. Although a short-term treatment (24h to 48h) with estradiol leads to a decrease in EGF-R number, the addition of hormone in cell culture for 5 days increases EGF-R level with a maximal effect observed at 10(-10) M estradiol. In contrast, when cells are treated with the antiestrogen hydroxytamoxifen, a dose-dependent decrease in EGF-R level occurs. We also report that EGF is able to induce estrogen receptors and, to a lesser extent, progesterone receptors when added to MCF-7 cell cultures. These results demonstrate an interaction between both estrogen receptor and EGF receptor growth promoting systems in target cells. The implications of such an interaction in the understanding of human breast cancer hormone responsiveness and, in the development of therapies, are discussed.  相似文献   

8.
Elevated insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) mRNA in senescent human mammary epithelial cells suggested that the IGFBP-3 gene product may inhibit cell proliferation. To test this hypothesis, we used a retroviral vector to express IGFBP-rP1 cDNA in the IGFBP-rP1-deficient MCF-7 breast cancer cell line. Compared with control vector-transduced cells, cumulative cell numbers for IGFBP-rP1-transduced polyclonal or clonal cell cultures were reduced by 39 and 74%, respectively, after 1 week. Medium conditioned by IGFBP-rP1-producing cultures reduced cumulative cell numbers in parental MCF-7 cultures by 20% compared with medium from cultures of a control vector-transduced cell line. Nuclear fragmentation analysis and cell proliferation assays completed in the presence of the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone excluded apoptosis as the responsible mechanism. The percentage of cells containing senescence-associated beta-galactosidase activity was doubled compared with control cell cultures. Flow cytometry analysis indicated that twice as many noncycling cells were present in the IGFBP-rP1-transduced MCF-7 cell cultures compared with controls. These findings indicate that IGFBP-rP1 is an inhibitor of MCF-7 breast cancer cell proliferation and may act via a cellular senescence-like mechanism.  相似文献   

9.
Employing defined media conditions, the insulin sensitivities of mouse mammary gland epithelial cells in primary culture and MCF-7 human mammary epithelial cells were determined. Insulin stimulated the rates of [3H]uridine incorporation into RNA and [3H]leucine incorporation into protein in both primary mouse mammary gland epithelial cell cultures and MCF-7 cell cultures at concentrations approximating the dilution endpoint of the hormone (10−21 M). Insulin stimulated the rate of [3H]thymidine incorporation into DNA in primary mouse mammary gland epithelial cells at the dilution endpoint concentrations. However, MCF-7 cells required insulin concentrations 100–1000-times that necessary in mouse mammary epithelial cultures to elicit an increased rate of [3H]thymidine incorporation into DNA. Evidence is presented which suggests that the increased rates of uptake of [3H]uridine, [3H]thymidine and [3H]leucine into their respective precursor pools is not responsible for the apparent stimulatation of RNA, DNA and protein synthesis.  相似文献   

10.
The role of human Sex Hormone-Binding Globulin (SHBG), the plasma carrier of sex steroids, and its membrane receptor, SHBG-R, in estrogen-dependent breast cancer has been investigated in our laboratory in the past few years. SHBG-R is expressed in MCF-10 A cells (not neoplastic mammary cells), MCF-7 cells (breast cancer, ER positive) and in tissue samples from patients affected with ER positive breast cancer, but not in estrogen-insensitive MDA-MB 231 cells. The SHBG/SHBG-R interaction, followed by the binding of estradiol to the complex protein/receptor, causes a significant increase of the intracellular levels of cAMP, but does not modify the amount of estradiol entering MCF-7 cells. The estradiol-induced proliferation of MCF-7 cells is inhibited by SHBG, through SHBG-R, cAMP and PKA. Similarly, the proliferation rate of tissue samples positive for SHBG-R was significantly lower than the proliferation rate of negative samples. SHBG and SHBG-R could thus trigger a ‘biologic’ anti-estrogenic pathway. In order to get a more detailed knowledge of this system, we first examined the frequence of the reported mutated form of SHBG in 255 breast cancer patients. The mutated SHBG is characterized by a point mutation (Asp 327→Asn) causing an additional N-glycosylation site, which does not affect the binding of steroids to SHBG. The frequence of the mutation was significantly higher (24.5%) in estrogen-dependent breast cancers than in healthy control subjects (11.6%). This observation confirms the close relationship between SHBG and estrogen-dependent breast cancer and suggests that the mutation could modify SHBG activity at cell site. Lastly, the possibility of using SHBG to modulate the estradiol action in breast cancer was further studied by transfecting MCF-7 cells with an expression vector carrying the SHBG cDNA (study in collaboration with G.L. Hammond). Transfected cells are able to produce significant amount of SHBG in their medium, but their SHBG-R is reduced to undetectable levels. The SHBG produced by transfected MCF-7 cells is, however, able to inhibit estradiol-induced proliferation of MCF-7 cells expressing a functional receptor. Thus, the local production of SHBG obtained with transfection could be a useful tool to control cell growth in estrogen-dependent breast cancer.  相似文献   

11.
Antiestrogen action of 2-hydroxyestrone on MCF-7 human breast cancer cells   总被引:6,自引:0,他引:6  
The estrogen responsive human breast cancer MCF-7 cell culture was examined for its response to 2-hydroxyestrone a principal metabolite of estradiol. Addition of 2-hydroxyestrone to the cell cultures in concentration of 10(-9) - 10(-6) M had no effect on cell growth and proliferation because of rapid O-methylation of the catechol estrogen by catechol O-methyltransferase which is highly active in these cells. In the presence of quinalizarin, a potent catechol O-methyltransferase inhibitor which reduces the O-methylation of the steroid, 10(-7) M and 10(-8) M 2-hydroxyestrone markedly suppresses the growth and proliferation of the cells. The tumor cell growth-inhibitory action of the catechol estrogen was neutralized by the presence of 10(-9) M estradiol. The catechol estrogen inhibition of cell growth is not observed in the estrogen receptor-negative human breast cancer cell lines MDA-MB-231 and MDA-MB-330 providing evidence that the inhibition is specific and is estrogen receptor-mediated. In contrast, the 16 alpha-hydroxylated metabolites of estradiol, estriol and 16 alpha-hydroxyestrone, are effective stimulators of MCF-7 cell proliferation with the latter exhibiting potency in excess of that expected from its estrogen receptor affinity. The present results represent the first observation of a specific receptor-mediated antiestrogenic action of 2-hydroxyestrone and suggest that the physiological regulation of the agonist activity of the primary estrogen may involve in situ generation of catechol estrogen.  相似文献   

12.
13.
Recombinant human erythropoietin (rHuEPO) is the erythropoiesis-stimulating hormone that is being used concurrently with chemotherapeutic drugs in the treatment of anemia of cancer. The effect of rHuEPO on cancer cells in 3-dimensional (3D) cultures is not known. The objective of the study was to determine the effect of rHuEPO on the viability of MCF-7 breast cancer cells from 2-dimensional (2D) and 3D cell cultures. The monolayer MCF-7 cells from 2D culture and MCF-7 cell from 3D culture generated by ultra-low adhesive microplate technique, were treated with 0, 0.1, 10, 100 or 200 IU/mL rHuEPO for 24, 48 or 72 h. The effects of rHuEPO on MCF-7 cell viability and proliferation were determined using the (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (MTT), neutral red retention time (NRRT), trypan blue exclusion assay (TBE), DNA fragmentation, acridine orange/propidium iodide staining (AO/PI) assays. The MCF-7 cells for 3D culture were also subjected to caspase assays and cell cycle analysis using flow cytometry. rHuEPO appeared to have greater effect at lowering the viability of MCF-7 cells from 3D than 2D cultures.rHuEPO significantly (p < 0.05) decreased viability and down-regulated the caspase activities of 3D MCF-7 cells in dose- and time-dependent manner. The cell cycle analysis showed that rHuEPO caused MCF-7 cells to enter the subG0/G1 phase. Thus, the study suggests that rHuEPO has a cytostatic effect on the MCF-7 breast cancer cells from 3D culture.  相似文献   

14.
Competition analysis with a number of known bioflavonoids demonstrated that these compounds (luteolin, quercetin, pelargonin) compete for [3H]estradiol binding to cytosol and nuclear type II sites in rat uterine preparations. The inhibition of [3H]estradiol binding to type II sites was specific and these bioflavonoids did not interact with the rat uterine estrogen receptor. Since estradiol stimulation of nuclear type II sites in the rat uterus is highly correlated with cellular hypertrophy and hyperplasia, we assessed the effects of these compounds on the growth of MCF-7 human breast cancer cells in culture and on estradiol stimulation of uterine growth in the immature rat. The data demonstrated that addition of quercetin (5-10 micrograms/ml) to MCF-7 cell cultures resulted in a dose-dependent inhibition of cell growth (DNA/flask). This effect was reversible by removal of quercetin from the culture medium, or by the addition of 10 nM estradiol-17 beta to these cell cultures containing this bioflavonoid. Since estradiol-17 beta (10 nM) stimulated nuclear type II sites and proliferation of MCF-7 cells, we believe bioflavonoid inhibition of MCF-7 cell growth may be mediated through an interaction with nuclear type II sites. This hypothesis was confirmed by in vivo studies which demonstrated that injection of luteolin or quercetin blocked estradiol stimulation of nuclear type II sites in the immature rat uterus and this correlated with an inhibition of uterine growth (wet and dry weight). These studies suggest bioflavonoids, through an interaction with type II sites, may be involved in cell growth regulation.  相似文献   

15.
Direct in vitro effects of IL-1 on hormone-dependent (MCF-7 and ZR-75-B) and independent (HS-578-T and MDA-231) human breast cancer cell proliferation were investigated in short-term and long-term cell cultures. For short-term (48 h) studies [3H]thymidine uptake was used as an index of proliferation, while for long-term (12 day) cultures actual cell numbers were determined. Initial studies, conducted with MCF-7 cells, demonstrated that both forms of recombinant human IL-1 (alpha and beta) at 10(-11) M inhibited [3H]thymidine uptake by MCF-7 by 70%, and by day 7 of the long-term study alpha and beta IL-1 at 10(-11) M inhibited MCF-7 cell growth by 80%. IL-1, while inhibiting the growth of another hormone-dependent breast cancer cell line; ZR-75-B, had no effect on the hormone-independent cell lines MDA-231 and HS-578-T. The differing proliferative responses of the hormone-dependent and independent cells to IL-1 may, in part, be due to the expression of IL-1 receptors on these cells, in that MCF-7 cells express IL-1 receptors [dissociation constant (Kd) = 2.0 x 10(-10) M; receptor density = 2,500 sites per cell and mol wt = 80,000] while the hormone-independent MDA-231 cells do not.  相似文献   

16.
Human breast cancer primary cultures are useful tools for the study of several aspects of cancer biology, including the effects of chemotherapy and acute gene expression in response to different hormonal/chemotherapy treatments. The present study reports the conditions for primary culture of breast cancer samples from untreated patients and the most effective collagenization method to dissociate human samples consisting in an overnight incubation with 1 mg/ml types II or IV collagenase and further incubation in DMEM:F12 (1:1) medium supplemented with glutamine, bovine insulin, penicillin-streptomycin, HEPES, estradiol, cortisol (F), tri-iodothyronine (T(3)), transferrine (TR), and 10% fetal calf serum (FCS). These conditions proved to be appropriate for both primary culture and the development of stable cell lines. Of the seven cell lines obtained, three fast growing and estrogen receptor (ER)+/progesterone receptor (PgR)+/EGF receptor (EGFR)+ have been characterized. The cells are able to grow both in soft agar and in nude mice, and express cytokeratins, all parameters characteristic of malignant epithelial cell lines. The cells also exhibit an increased proliferation rate in the presence of estradiol, progesterone, and EGF, suggesting the presence of the corresponding receptors. The mRNA expression of type alpha- and beta-ER as well as EGFR, was confirmed by RT-PCR. In conclusion, the novel cell lines described, arose from primary tumors and are sensitive to estradiol, progesterone, and EGF. This not only expands the repertoire of breast cancer cells available as potentially useful tools for examining most parameters in breast cancer "in vitro", but also provides unique new models to explore the complex regulation by steroids as well as growth factors in such cells.  相似文献   

17.
Retinoids are currently being tested for the treatment and prevention of several human cancers, including breast cancer. However, the anti-cancer and growth inhibitory mechanisms of retinoids are not well understood. All-trans retinoic acid (RA) inhibits the growth of the estrogen receptor-positive (ER+) breast cancer cell line, MCF-7, in a reversible and dose-dependent manner. In contrast, insulin-like growth factors (IGF-I,IGF-II) and insulin are potent stimulators of the proliferation of MCF-7 and several other breast cancer cell lines. Pharmacologic doses of RA (≤10?6M) completely inhibit IGF-I-stimulated MCF-7 cell growth. Published data suggest that the growth inhibitory action of RA on IGF-stimulated cell growth is linear and dose-dependent, similar to RA inhibition of unstimulated or estradiol-stimulated MCF-7 cell growth. Surprisingly, we have found that IGF-I or insulin-stimulated cell growth is increased to a maximum of 132% and 127%, respectively, by cotreatment with 10?7 M RA, and that 10?9–10?7 M RA increase cell proliferation compared to IGF-I or insulin alone. MCF-7 cells that stably overexpress IGF-II are also resistant to the growth inhibitory effects of 10?9–10?7 M RA. Treatment with the IGF-I receptor blocking antibody, αIR-3, restores RA-induced growth inhibition of IGF-I-treated or IGF-II-overexpressing MCF-7 cells, indicating that the IGF-I receptor is mediating these effects. IGFs cannot reverse all RA effects since the altered cell culture morphology of RA-treated cells is similar in growth-inhibited cultures and in IGF-II expressing clones that are resistant to RA-induced growth inhibition. These results indicate that RA action on MCF-7 cells is biphasic in the presence of IGF-I or insulin with 10?9–10?7 M RA enhancing cell proliferation and ≥ 10?6M RA causing growth inhibition. As IGF-I and IGF-II ligands are frequently detectable in breast tumor tissues, their potential for modulation of RA effects should be considered when evaluating retinoids for use in in vivo experimental studies and for clinical purposes. Additionally, the therapeutic use of inhibitors of IGF action in combination with RA is suggested by these studies. © 1995 Wiley-Liss Inc.  相似文献   

18.
The process of mammary epithelial morphogenesis is influenced by hormones. The study of hormone action on the breast epithelium using 2D cultures is limited to cell proliferation and gene expression endpoints. However, in the organism, mammary morphogenesis occurs in a 3D environment. 3D culture systems help bridge the gap between monolayer cell culture (2D) and the complexity of the organism. Herein, we describe a 3D culture model of the human breast epithelium that is suitable to study hormone action. It uses the commercially available hormone-responsive human breast epithelial cell line, T47D, and rat tail collagen type 1 as a matrix. This 3D culture model responds to the main mammotropic hormones: estradiol, progestins and prolactin. The influence of these hormones on epithelial morphogenesis can be observed after 1- or 2-week treatment according to the endpoint. The 3D cultures can be harvested for analysis of epithelial morphogenesis, cell proliferation and gene expression.  相似文献   

19.
The docking protein Gab2 is a proto-oncogene product that is overexpressed in primary breast cancers. To determine the functional consequences of Gab2 overexpression, we utilized the immortalized human mammary epithelial cell line MCF-10A. In monolayer culture, expression of Gab2 at levels comparable with those detected in human breast cancer cells accelerated epidermal growth factor (EGF)-induced cell cycle progression and was associated with increased basal Stat5 tyrosine phosphorylation and enhanced and/or more sustained EGF-induced Erk and Akt activation. Three-dimensional Matrigel culture of MCF-10A cells resulted in the formation of polarized, growth-arrested acini with hollow lumina. Under these conditions, Gab2 increased cell proliferation during morphogenesis, leading to significantly larger acini, an effect dependent on Gab2 binding to Grb2 and Shp2 and enhanced by recruitment of the p85 subunit of phosphatidylinositol 3-kinase. Pharmacological inhibition of MEK revealed that, in addition to direct activation of phosphatidylinositol 3-kinase, increased Erk signaling also contributed to Gab2-mediated enhancement of acinar size. In addition, Gab2 overcame the proliferative suppression that normally occurs in late stage cultures and conferred independence of the morphogenetic program from exogenous EGF. Finally, higher levels of Gab2 expression led to the formation of large disorganized structures with defective luminal clearance. These findings support a role for Gab2 in mammary tumorigenesis.  相似文献   

20.
MCF-10F is a spontaneously immortalized nontransformed human breast epithelial cell line which does not grow in soft agar or form tumors in nude mice. Though the presence of estrogen receptors has not been found in these cells, they can metabolize estradiol very efficiently. The present study describes the endocrine characteristics of this cell line with respect to growth response to estradiol and its metabolites, estradiol metabolism and aromatase activity. MCF-10F cells were growth stimulated by 16alpha-hydroxyestrone and estriol, whereas, estradiol and other estradiol metabolites did not affect cell proliferation. The constitutive level of 16alpha-hydroxyestrone, a metabolite of estradiol biotransformation that has been associated with enhanced carcinogenesis in several animal, cell and tissue culture models, was a hundredfold higher in the non-transformed MCF-10F cells than in the transformed MCF-7 cells. Treatment with the carcinogen, dimethylbenz(a)anthracene (DMBA), however, did not upregulate 16alpha-hydroxylation as was observed in transformed MCF-7 cells. MCF-10F cells also had no detectable aromatase activity though the level of 17-oxidation was unusually high as compared with MCF-7 cells. Our results using the non-transformed MCF-10F cells as a model system suggests that the presence of high level of 16alpha-hydroxyestrone, a metabolite previously shown to be associated with malignant phenotype, may not be sufficient for breast cancer transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号