首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
病毒病是危害辣椒生产的主要病害之一。烟草花叶病毒(TMV)是最早被发现的病毒,它引起的烟草花叶病毒病是多种作物的重要病害,给辣椒等茄科作物的生产带来重大损失。文中综述了辣椒抗TMV防御反应中的相关基因及其研究进展,为明确辣椒抗TMV机理,挖掘抗病基因,选育抗病材料提供参考。  相似文献   

3.
The use of genetic resistance is considered to be the most effective and sustainable approach to the control of plant pathogens. Although most of the known natural resistance genes are monogenic dominant R genes that are predominant against fungi and bacteria, more and more recessive resistance genes against viruses have been cloned in the last decade. Interestingly, of the 14 natural recessive resistance genes against plant viruses that have been cloned from diverse plant species thus far, 12 encode the eukaryotic translation initiation factor 4E (eIF4E) or its isoform eIF(iso)4E. This review is intended to summarize the current state of knowledge about eIF4E and the possible mechanisms underlying its essential role in virus infection, and to discuss recent progress and the potential of eIF4E as a target gene in the development of genetic resistance to viruses for crop improvement.  相似文献   

4.
Durable strategies to deploy plant resistance in agricultural landscapes   总被引:1,自引:0,他引:1  
The deployment of resistant crops often leads to the emergence of resistance-breaking pathogens that suppress the yield benefit provided by the resistance. Here, we theoretically explored how farmers' main leverages (resistant cultivar choice, resistance deployment strategy, landscape planning and cultural practices) can be best combined to achieve resistance durability while minimizing yield losses as a result of plant viruses. Assuming a gene-for-gene type of interaction, virus epidemics are modelled in a landscape composed of a mosaic of resistant and susceptible fields, subjected to seasonality, and a reservoir hosting viruses year-round. The model links the genetic and the epidemiological processes, shaping at nested scales the demogenetic dynamics of viruses. The choice of the resistance gene (characterized by the equilibrium frequency of the resistance-breaking virus at mutation-selection balance in a susceptible plant) is the most influential leverage of action. Our results showed that optimal strategies of resistance deployment range from 'mixture' (where susceptible and resistant cultivars coexist) to 'pure' strategies (with only resistant cultivar) depending on the resistance characteristics and the epidemiological context (epidemic incidence and landscape connectivity). We demonstrate and discuss gaps concerning virus epidemiology across the agro-ecological interface that must be filled to achieve sustainable disease management.  相似文献   

5.
One of the first successes of plant biotechnology has been the creation and commercialisation of transgenic crops exhibiting resistance to major insect pests. First generation products encompassed plants with single insecticidal Bt genes with resistance against major pests of corn and cotton. Modelling studies predicted that usefulness of these resistant plants would be short-lived, as a result of the ability of insects to develop resistance against single insecticidal gene products. However, despite such dire predictions no such collapse has taken place and the acreage of transgenic insect resistance crops has been increasing at a steady rate over the 9 years since the deployment of the first transgenic insect resistant plant. However, in order to assure durability and sustainability of resistance, novel strategies have been contemplated and are being developed. This perspective addresses a number of potentially useful strategies to assure the longevity of second and third generation insect resistant plants.  相似文献   

6.
Durable resistance to greenbug, Schizaphis graminum (Rondani), in wheat is a goal of wheat improvement teams, and one that has been complicated by the regular occurrence of damaging biotypes. Simulation modeling studies suggest that pyramiding resistance genes, i.e., combining more than one resistance gene in a single cultivar or hybrid, may provide more durable resistance than sequential releases of single genes. We examined this theory by pyramiding resistance genes in wheat and testing a series of greenbug biotypes. Resistance genes Gb2, Gb3, and Gb6, and pyramided genes Gb2/Gb3, Gb2/Gb6, and Gb3/Gb6 were tested for effectiveness against biotypes E, F, G, H, and I. By comparing reactions of plants with pyramided genes to those with single resistance genes, we found that pyramiding provided no additional protection over that conferred by the single resistance genes. Based on the results of this test, we concluded that the sequential release of single resistance genes, combined with careful monitoring of greenbug population biotypes, is the most effective gene deployment strategy for greenbug resistance in wheat.  相似文献   

7.
Whitefly-transmitted geminiviruses (genusBegomovirus) are phytopathogens that cause heavy losses to crops worldwide. Efforts to engineer resistance against these viruses are focused mainly on silencing of complementary-sense virus genes involved in virus replication. Here we have targeted a virion-sense gene (AV2) to develop resistance againstTomato leaf curl New Delhi virus, a bipartite begomovirus prevalent throughout the Indian subcontinent. We show that tobacco plants transformed with an antisense construct targeting this gene are resistant to the virus. Following challenged with the virus, transgenic plants remained symptomless, although viral DNA could be detected in some plants by PCR. This is the first report of transgenic resistance against a bipartite begomovirus obtained by targeting a virion-sense gene. The relatively conserved nature of the gene suggests that the technology may be useful to develop broad-spectrum resistance which is required because of the fact that plants are often infected with multiple begomoviruses in the field.  相似文献   

8.
In contrast to large-effect qualitative disease resistance,quantitative disease resistance(QDR) exhibits partial and generally durable resistance and has been extensively utilized in crop breeding.The molecular mechanisms underlying QDR remain largely unknown but considerable progress has been made in this area in recent years.In this review,we summarize the genes that have been associated with plant QDR and their biological functions.Many QDR genes belong to the canonical resistance gene catego...  相似文献   

9.
Cotton is under the constant threat of leaf curl virus, which is a major constraint for successful production of cotton in the Pakistan. A total of 3338 cotton genotypes belonging to different research stations were screened, but none were found to be resistant against the Burewala strain of cotton leaf curl virus (CLCuV). We explored the possibility of transferring virus-resistant genes from Gossypium arboreum (2n = 26) into G. hirsutum (2n = 52) through conventional breeding techniques. Hybridization was done manually between an artificial autotetraploid of G. arboreum and an allotetraploid G. hirsutum, under field conditions. Boll shedding was controlled by application of exogenous hormones, 50 mg/L gibberellic acid and 100 mg/L naphthalene acetic acid. Percentage pollen viability in F(1) hybrids was 1.90% in 2(G. arboreum) x G. hirsutum and 2.38% in G. hirsutum x G. arboreum. Cytological studies of young buds taken from the F(1) hybrids confirmed that they all were sterile. Resistance against CLCuV in the F(1) hybrids was assessed through grafting, using the hybrid plant as the scion; the stock was a virus susceptible cotton plant, tested under field and greenhouse conditions. All F(1) cotton hybrids showed resistance against CLCuV, indicating that it is possible to transfer resistant genes from the autotetraploid of the diploid donor specie G. arboreum into allotetraploid G. hirsutum through conventional breeding, and durable resistance against CLCuV can then be deployed in the field.  相似文献   

10.
Resistance against both Potato virus Y (PVY) and Tobacco etch virus (TEV) was identified in the wild tomato relative Lycopersicon hirsutum PI247087. Analysis of the segregation ratio in F(2)/F(3) and BC(1) interspecific progenies indicated that a single recessive gene, or two very tightly linked recessive loci, are involved in resistance to both potyviruses. This locus was named pot-1. Using amplified fragment length polymorphism markers and a set of L. hirsutum introgression lines, pot-1 was mapped to the short arm of tomato chromosome 3, in the vicinity of the recessive py-1 locus for resistance to corky root rot. Because of the occurrence of phenotypically similar genes in pepper ( Capsicum spp.), the comparative genetics of resistance to potyviruses between tomato and pepper was investigated. Unlike most of the comparative genetic studies on resistance genes, pot-1 was tightly flanked by the same restriction fragment length polymorphism (RFLP) markers than the pvr2/pvr5 locus for resistance to PVY and TEV from pepper. These results may indicate that recessive resistance genes against potyviruses evolve less rapidly than the majority of the dominant genes cloned so far, and consequently may belong to a different family of resistance genes.  相似文献   

11.
Rice black-streaked dwarf virus (RBSDV) and stripe virus (RSV) are the two chronic viral diseases causing great damage to rice (Oryza sativa L.) production in China, and both are transmitted by the small brown planthopper (SBPH, Laodelphax striatellus Fallén). Quantitative trait loci (QTL) affecting field resistance to these two viral diseases were identified using QTL mapping software in a set of reciprocal introgression lines derived from the cross between Lemont and Teqing. A panel of 119 landraces was used for marker confirmation and allele mining. A total of 17 quantitative resistance loci (QRL) for the infection incidences of RBSDV and RSV were discovered and belong to 16 regions on all chromosomes except chromosome 12. Among them, 12 QRL were confirmed by association mapping, and many novel alleles at these loci were mined from the set of landraces. Only one region was found to be responsible for the genetic overlap between the field resistance against RBSDV and RSV, which was reported to be associated with SBPH resistance. The favorable alleles at the above novel and/or overlapping loci should be effective for marker-assisted selection breeding for resistance against the two diseases and the insect. Different strategies of varietal development and effective deployment against the two viral diseases are also discussed.  相似文献   

12.
Coat protein (CP) -mediated resistance against an Indian isolate of the Cucumber mosaic virus (CMV) subgroup IB was demonstrated in transgenic lines of Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transformation. Out of the fourteen independently transformed lines developed, two lines were tested for resistance against CMV by challenge inoculations. The transgenic lines exhibiting complete resistance remained symptomless throughout life and showed reduced or no virus accumulation in their systemic leaves after virus challenge. These lines also showed virus resistance against two closely related strains of CMV. This is the first report of CP-mediated transgenic resistance against a CMV subgroup IB member isolated from India.  相似文献   

13.
Recessive resistance genes against plant viruses have been recognized for a long time but their molecular nature has only recently been linked to components of the eukaryotic translation initiation complex. Translation initiation factors, and particularly the eIF4E and eIF4G protein families, were found to be essential determinants in the outcome of RNA virus infections. Viruses affected by these genes belong mainly to potyviruses; natural viral resistance mechanisms as well as mutagenesis analysis in Arabidopsis all converged to identify the same set of translation initiation factors. Their role in plant resistance against RNA viruses remains to be elucidated. Although the interaction with the protein synthesis machinery is probably a key element for successful RNA virus infection, other possible mechanisms will also be discussed.  相似文献   

14.
Systemic acquired resistance (SAR) is induced by pathogens and confers protection against a broad range of pathogens. Several SAR signals have been characterized, but the nature of the other unknown signalling by small metabolites in SAR remains unclear. Glutathione (GSH) has long been implicated in the defence reaction against biotic stress. However, the mechanism that GSH increases plant tolerance against virus infection is not entirely known. Here, a combination of a chemical, virus-induced gene-silencing-based genetics approach, and transgenic technology was undertaken to investigate the role of GSH in plant viral resistance in Nicotiana benthamiana. Tobacco mosaic virus (TMV) infection results in increasing the expression of GSH biosynthesis genes NbECS and NbGS, and GSH content. Silencing of NbECS or NbGS accelerated oxidative damage, increased accumulation of reactive oxygen species (ROS), compromised plant resistance to TMV, and suppressed the salicylic acid (SA)-mediated signalling pathway. Application of GSH or l -2-oxothiazolidine-4-carboxylic acid (a GSH activator) alleviated oxidative damage, decreased accumulation of ROS, elevated plant local and systemic resistance, enhanced the SA-mediated signalling pathway, and increased the expression of ROS scavenging-related genes. However, treatment with buthionine sulfoximine (a GSH inhibitor) accelerated oxidative damage, elevated ROS accumulation, compromised plant systemic resistance, suppressed the SA-mediated signalling pathway, and reduced the expression of ROS-regulating genes. Overexpression of NbECS reduced oxidative damage, decreased accumulation of ROS, increased resistance to TMV, activated the SA-mediated signalling pathway, and increased the expression of the ROS scavenging-related genes. We present molecular evidence suggesting GSH is essential for both local and systemic resistance of Nbenthamiana to TMV through a differential modulation of SA and ROS.  相似文献   

15.
《Seminars in Virology》1993,4(6):349-356
The resistance of transgenic plants express genes encoding viral coat proteins to infection by the viruses from which the genes are derived was termed coat protein-mediated resistance (CP-MR) and has been demonstrated for a variety of virus/host combinations. The mechanism of CP-MR is perhaps best understood in the tobacco/TMV system. CP-MR against TMV requires accumulation of CP and does not seem to involve the induction of plant defense mechanisms. The resistance appears to be mainly based on the inhibition of virion disassembly in transgenic cells although there is evidence that a later step of infection is also affected. CP-MR of tobacco to TMV shares some features with classical cross-protection and with CP-MR in some, but not all other host/virus combinations.  相似文献   

16.

Key message

A first set of 25 NILs carrying ten BPH resistance genes and their pyramids was developed in the background of indica variety IR24 for insect resistance breeding in rice.

Abstract

Brown planthopper (Nilaparvata lugens Stal.) is one of the most destructive insect pests in rice. Development of near-isogenic lines (NILs) is an important strategy for genetic analysis of brown planthopper (BPH) resistance (R) genes and their deployment against diverse BPH populations. A set of 25 NILs with 9 single R genes and 16 multiple R gene combinations consisting of 11 two-gene pyramids and 5 three-gene pyramids in the genetic background of the susceptible indica rice cultivar IR24 was developed through marker-assisted selection. The linked DNA markers for each of the R genes were used for foreground selection and confirming the introgressed regions of the BPH R genes. Modified seed box screening and feeding rate of BPH were used to evaluate the spectrum of resistance. BPH reaction of each of the NILs carrying different single genes was variable at the antibiosis level with the four BPH populations of the Philippines. The NILs with two- to three-pyramided genes showed a stronger level of antibiosis (49.3–99.0%) against BPH populations compared with NILs with a single R gene NILs (42.0–83.5%) and IR24 (10.0%). Background genotyping by high-density SNPs markers revealed that most of the chromosome regions of the NILs (BC3F5) had IR24 genome recovery of 82.0–94.2%. Six major agronomic data of the NILs showed a phenotypically comparable agronomic performance with IR24. These newly developed NILs will be useful as new genetic resources for BPH resistance breeding and are valuable sources of genes in monitoring against the emerging BPH biotypes in different rice-growing countries.
  相似文献   

17.
《Seminars in Virology》1993,4(6):381-387
Tomato spotted with virus (TSWV) is deviant from most other plant viruses in having (mainly) a negative-strand RNA genome and a lipid envelope, and in being propagatively transmitted by thrips. Due to increasing resistance of thrips to insecticides as well as to a relative shortage of natural resistance genes suitable for breeding, genetically engineered forms of resistance to TSWV infections are urgently needed. This review will discuss the recently approved strategy of N gene-mediated protection, which has been shown to hold even against thrips-mediated virus inoculation, as well as a number of potential strategies that are likely to be developed in the near future.  相似文献   

18.
In recent years, biotechnology has permitted regulation of the expression of endogenous plant genes to improve agronomlcally important traits. Genetic modification of crops has benefited from emerging knowledge of new genes, especially genes that exhibit novel functions, one of which is eukaryotlc initiation factor 4E (eIF4E). eIF4E Is one of the most important translation initiation factors Involved in eukaryotic initiation. Recent research has demonstrated that virus resistance mediated by eIF4E and Its isoform elf (Iso)4E occurs in several plant-virus interactions, thus indicating a potential new role for eIF4E/elF(Iso)4E In resistance strategies against plant viruses. In this review, we briefly describe eIF4E activity In plant translation, its potential role, and functions of the eIF4E subfamily In plant-virus interactions. Other initiation factors such as elF4G could also play a role In plant resistance against viruses. Finally, the potential for developing eIF4E-mediated resistance to plant viruses in the future Is discussed. Future research should focus on elucidation of the resistance mechanism and spectrum mediated by eIF4E. Knowledge of a particu- lar plant-virus interaction will help to deepen our understanding of eIF4E and other eukaryotic Initiation factors, and their involvement in virus disease control.  相似文献   

19.
Rice Resistance to Planthoppers and Leafhoppers   总被引:3,自引:0,他引:3  
For over 50 years, host-plant resistance has been regarded as an efficient method to reduce yield losses to rice caused by delphacid and cicadelid hoppers. Already a number of resistant rice varieties have been developed and deployed throughout Asia. To date, over 70 hopper resistance genes have been identified in rice; however, less than 10 genes have been deliberately introduced to commercial rice varieties. Currently, due to recent brown planthopper (Nilaparvata lugens [Stål]) and whitebacked planthopper (Sogatella furcifera [Horvath]) outbreaks occurring at an unprecedented scale, researchers are working toward a second generation of resistant varieties using newly identified gene loci and applying new molecular breeding methods. This paper reviews advances in the identification of resistance genes and QTLs against hoppers in rice. It collates all published information on resistance loci and QTLs against the major rice planthoppers and leafhoppers and presents information on gene locations, genetic markers, differential varieties, and wild rice species as sources of resistance. The review indicates that, whereas progress in the identification of genes has been rapid, considerable tidying of the information is required, especially regarding gene nomenclature and resistance spectra. Furthermore, sound information on gene functioning is almost completely lacking. However, hopper responses to resistance mechanisms are likely to be similar because a single phenotyping technique has been applied by most national and international breeding programs during germplasm screening. The review classifies genes occurring at two chromosome regions associated with several identified resistance loci and highlights these (Chr4S: BphR-R and Chr12L: BphR-R) as general stress response regions. The review calls for a greater diversity of phenotyping methods to enhance the durability of resistant varieties developed using marker-aided selection and emphasizes a need to anticipate the development of virulent hopper populations in response to the field deployment of genes.  相似文献   

20.
Rhizomania is a soil-borne disease that occurs throughout the major sugar beet growing regions of the world, causing severe yield losses in the absence of effective control measures. It is caused by Beet necrotic yellow vein virus (BNYVV), which is transmitted by the obligate root-infecting parasite Polymyxa betae . BNYVV has a multipartite RNA genome with all natural isolates containing four RNA species, although some isolates have a fifth RNA. The larger RNA1 and RNA2 contain the housekeeping genes of the virus and are always required for infection, whereas the smaller RNAs are involved in pathogenicity and vector transmission. RNA5-containing isolates are restricted to Asia and some parts of Europe, and these isolates tend to be more aggressive. With no acceptable pesticides available to restrict the vector, the control of rhizomania is now achieved almost exclusively through the use of resistant cultivars. A single dominant resistance gene, Rz1 , has been used to manage the disease worldwide in recent years, although this gene confers only partial resistance. More recently, new variants of BNYVV have evolved (both with and without RNA5) that are able to cause significant yield penalties on resistant cultivars. These isolates are not yet widespread, but their appearance has resulted in accelerated searches for new sources of resistance to both the virus and the vector. Combined virus and vector resistance, achieved either by conventional or transgenic breeding, offers the sugar beet industry a new approach in its continuing struggle against rhizomania.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号