首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The epithalamus of zebrafish presents the best-studied case of directional asymmetry in the vertebrate brain. Epithalamic asymmetries are coupled to visceral asymmetry and include left-sided migration of a single midline structure (the parapineal organ) and asymmetric differentiation of paired bilateral nuclei (habenulae). The mechanisms underlying the establishment of epithalamic asymmetry involve the interplay between anti-symmetry and laterality signals to guide asymmetric parapineal migration. This event triggers the amplification of habenular asymmetries and the subsequent organisation of lateralised circuits in the interpeduncular nucleus. This review will summarise our current understanding on these processes and propose a sequential modular organisation of the events controlling the development of asymmetry along the parapineal–habenular–interpeduncular axis.  相似文献   

2.
3.
The human brain exhibits notable asymmetries. Little is known about these symmetry deviations; however scientists are beginning to understand them by employing the lateralized zebrafish epithalamus as a model. The zebrafish epithalamus consists of the pineal and parapineal organs and paired habenular nuclei located bilateral to the pineal complex. While zebrafish pineal and parapineal organs arise from a common population of cells, parapineal cells undergo a separate program that allows them to migrate left of the pineal anlage. Studying the processes that lead to brain laterality in zebrafish will allow a better understanding of how human brain laterality is established.  相似文献   

4.
5.
The habenulae are part of an evolutionarily highly conserved limbic-system conduction pathway that connects telencephalic nuclei to the interpeduncular nucleus (IPN) of the midbrain . In zebrafish, unilateral activation of the Nodal signaling pathway in the left brain specifies the laterality of the asymmetry of habenular size . We show "laterotopy" in the habenulo-interpeduncular projection in zebrafish, i.e., the stereotypic, topographic projection of left-sided habenular axons to the dorsal region of the IPN and of right-sided habenular axons to the ventral IPN. This asymmetric projection is accounted for by a prominent left-right (LR) difference in the size ratio of the medial and lateral habenular sub-nuclei, each of which specifically projects either to ventral or dorsal IPN targets. Asymmetric Nodal signaling directs the orientation of laterotopy but is dispensable for the establishment of laterotopy itself. Our results reveal a mechanism by which information distributed between left and right sides of the brain can be transmitted bilaterally without loss of LR coding, which may play a crucial role in functional lateralization of the vertebrate brain .  相似文献   

6.
7.
8.
Directional asymmetry and the measurement of developmental instability   总被引:5,自引:0,他引:5  
Three widely used methods of estimating fluctuating asymmetry may yield serious overestimates if directional asymmetry is present. When two sides of a bilateral trait grow at different rates, then the asymmetry variance (Var[l-r]) increases with size, even when developmental noise is nil. But the residual variance around a population's mean developmental trajectory is invariant with respect to size. Thus, it can be used as a measure of developmental instability. We introduce a measure of developmental instability, the residual variance (s2δ), obtainable from either a major axis regression, which is equivalent to a principal component analysis on l and r, or a general structural model. This residual variance can be estimated from directionally asymmetric or even antisymmetric traits. We present examples of developmental instability estimated from directionally asymmetric mandibles (house mouse) and leaves (soybean), and antisymmetric claws (fiddler crab).  相似文献   

9.
Asymmetry was investigated in the forelimbs of 150 rhesus monkey (Macaca mulatta) skeletons using measurements of right and left humerii, radii, ulnae, second metacarpals, and femora. Seven of the ten forelimb dimensions were larger on the right than on the left side. Paired t-tests revealed that the mean of the right side was significantly larger than that for the left for two measurements of the ulna and two of the humerus. No measurement was significantly larger on the left than on the right side. These results indicate a small but significant asymmetry in the forelimb bones of rhesus monkeys and, as is the case for humans, the direction of asymmetry favors the right side. Our findings are consistent with an interpretation of hypertrophy of certain muscles and opens the question of whether rhesus monkeys preferentially use their right forelimbs for manipulative tasks that require manual dexterity, as is the case for humans. These forelimb skeletal asymmetries are discussed in light of the recent literature on cortical asymmetry and handedness in nonhuman primates.  相似文献   

10.
Oda-Ishii I  Ishii Y  Mikawa T 《PloS one》2010,5(10):e13689

Background

The notochord is a signaling center required for the patterning of the vertebrate embryic midline, however, the molecular and cellular mechanisms involved in the formation of this essential embryonic tissue remain unclear. The urochordate Ciona intestinalis develops a simple notochord from 40 specific postmitotic mesodermal cells. The precursors intercalate mediolaterally and establish a single array of disk-shaped notochord cells along the midline. However, the role that notochord precursor polarization, particularly along the dorsoventral axis, plays in this morphogenetic process remains poorly understood.

Methodology/Principal Findings

Here we show that the notochord preferentially accumulates an apical cell polarity marker, aPKC, ventrally and a basement membrane marker, laminin, dorsally. This asymmetric accumulation of apicobasal cell polarity markers along the embryonic dorsoventral axis was sustained in notochord precursors during convergence and extension. Further, of several members of the Eph gene family implicated in cellular and tissue morphogenesis, only Ci-Eph4 was predominantly expressed in the notochord throughout cell intercalation. Introduction of a dominant-negative Ci-Eph4 to notochord precursors diminished asymmetric accumulation of apicobasal cell polarity markers, leading to defective intercalation. In contrast, misexpression of a dominant-negative mutant of a planar cell polarity gene Dishevelled preserved asymmetric accumulation of aPKC and laminin in notochord precursors, although their intercalation was incomplete.

Conclusions/Significance

Our data support a model in which in ascidian embryos Eph-dependent dorsoventral polarity of notochord precursors plays a crucial role in mediolateral cell intercalation and is required for proper notochord morphogenesis.  相似文献   

11.
Signalling by fibroblast growth factors (FGFs) at the mid-hindbrain boundary (MHB) is of central importance for anteroposterior neural patterning from the isthmic organiser. Graded suppression of FGF signalling by increasing amounts of a dominant negative FGF receptor provides evidence that in addition to anteroposterior patterning, FGF signalling is also involved in patterning along the dorsoventral axis at the MHB. FGF signalling at the MHB is required for the activation of the HH target gene spalt at the MHB. Our results indicate that FGF signalling mediates the competence of the MHB to activate spalt in response to SHH. This interdependence of the two signalling pathways is also found in the outbudding optic vesicle where HH requires functional FGF signalling to activate spalt in the proximal eye region.  相似文献   

12.
The dorsal diencephalon (or epithalamus) of larval zebrafish displays distinct left-right asymmetries. The pineal complex consists of the pineal organ anlage and an unpaired, left-sided accessory organ - the parapineal. The neighboring brain nuclei, the left and right dorsal habenulae, show consistent differences in their size, density of neuropil and gene expression. Mutational analyses demonstrate a correlation between the left-right position of the parapineal and the laterality of the habenular nuclei. We show that selective ablation of the parapineal organ results in the loss of habenular asymmetry. The left-sided parapineal therefore influences the left-right identity of adjacent brain nuclei, indicating that laterality of the dorsal diencephalon arises in a step-wise fashion.  相似文献   

13.
Asymmetry of paired dimensions has been recognized as a methodological problem in anthropometry and more recently as an indicator of environmental stress. This study seeks to determine the extent of directional asymmetry for some of the measurements commonly made in anthropometry. Upper arm circumference, biepicondylar breadth, triceps and subscapular skinfolds, bicondylar breadth of the femur, and calf circumference were measured on right and left sides among 135 white adolescents from suburban Philadelphia. Handedness (right or nonright) was subject-assessed. Body composition was estimated through underwater weighing. Asymmetry was evaluated using a paired t test. Arm measurements are significantly asymmetric in favor of the right side; subscapular skinfolds and leg measurements are not significantly asymmetric. Among the sample of right-handed subjects (n = 116), upper arm circumference and biepicondylar breadth were significantly larger on the right side, and, among the males of this subsample, triceps was as well. The nonright-handed subjects (n = 19) did not show statistically significant asymmetry. Asymmetry was negatively but weakly related to body composition. These results are consistent with an explanation in terms of preferred use of one side of the body and consequent muscle hypertrophy, but an adequate test of this explanation requires hypothesis testing in larger samples of nonright-handed subjects.  相似文献   

14.
Extensive reduction of the size and complexity of the pelvic skeleton (i.e., pelvic reduction) has evolved repeatedly in Gasterosteus aculeatus. Asymmetrical pelvic vestiges tend to be larger on the left side (i.e., left biased) in populations studied previously. Loss of Pitx1 expression is associated with pelvic reduction in G. aculeatus, and pelvic reduction maps to the Pitx1 locus. Pitx1 knockouts in mice have reduced hind limbs, but the left limb is larger. Thus left-biased directional asymmetry of stickleback pelvic vestiges may indicate the involvement of Pitx1 in pelvic reduction. We examined 6,356 specimens from 27 Cook Inlet populations of G. aculeatus with extensive pelvic reduction. Samples from 20 populations exhibit the left bias in asymmetrical pelvic vestiges expected if Pitx1 is involved, and three have a slight, non-significant left bias. However, samples from three populations have a significant right bias, and one large sample from another population has equal frequencies of specimens with larger vestiges on the left or right side. A sample of fossil threespine stickleback also has significantly left-biased pelvic vestiges. These results suggest that silencing of Pitx1 or the developmental pathway in which it functions in the pelvis is the usual cause of pelvic reduction in most Cook Inlet populations of G. aculeatu, and that it caused pelvic reduction at least 10 million years ago in a stickleback population. A different developmental genetic mechanism is implicated for three populations with right-biased pelvic vestiges and for the population without directional asymmetry.  相似文献   

15.
A highly conserved TGF-&bgr; signaling pathway is involved in the establishment of the dorsoventral axis of the vertebrate embryo. Specifically, Bone Morphogenetic Proteins (Bmps) pattern ventral tissues of the embryo while inhibitors of Bmps, such as Chordin, Noggin and Follistatin, are implicated in dorsal mesodermal and neural development. We investigated the role of Tolloid, a metalloprotease that can cleave Chordin and increase Bmp activity, in patterning the dorsoventral axis of the zebrafish embryo. Injection of tolloid mRNA into six dorsalized mutants rescued only one of these mutants, mini fin. Through chromosomal mapping, linkage and cDNA sequence analysis of several mini fin alleles, we demonstrate that mini fin encodes the tolloid gene. Characterization of the mini fin mutant phenotype reveals that Mini fin/Tolloid activity is required for patterning ventral tissues of the tail: the ventral fin, and the ventroposterior somites and vasculature. Gene expression studies show that mfn mutants exhibit reduced expression of ventrally restricted markers at the end of gastrulation, suggesting that the loss of ventral tail tissues is caused by a dorsalization occurring at the end of gastrulation. Based on the mini fin mutant phenotype and the expression of tolloid, we propose that Mini fin/Tolloid modifes the Bmp activity gradient at the end of gastrulation, when the ventralmost marginal cells of the embryo are in close proximity to the dorsal Chordin-expressing cells. At this time, unimpeded Chordin may diffuse to the most ventral marginal regions and inhibit high Bmp activity levels. In the presence of Mini fin/Tolloid, however, Chordin activity would be negatively modulated through proteolytic cleavage, thereby increasing Bmp signaling activity. This extracellular mechanism is amplified by an autoregulatory loop for bmp gene expression.  相似文献   

16.
Drosophila metalloproteinase Tolloid (TLD) is responsible for cleaving the antagonist Short gastrulation (SOG), thereby regulating signaling by the bone morphogenetic protein (BMP) Decapentaplegic (DPP). In mice there are four TLD-related proteinases, two of which, BMP1 and mammalian Tolloid-like 1 (mTLL1), are responsible for cleaving the SOG orthologue Chordin, thereby regulating signaling by DPP orthologues BMP2 and 4. However, although TLD mutations markedly dorsalize Drosophila embryos, mice doubly homozygous null for BMP1 and mTLL1 genes are not dorsalized in early development. Only a single TLD-related proteinase has previously been reported for zebrafish, and mutation of the zebrafish TLD gene (mini fin) results only in mild dorsalization, manifested by loss of the most ventral cell types of the tail. Here we identify and map the zebrafish BMP1 gene bmp1. Knockdown of BMP1 expression results in a mild tail phenotype. However, simultaneous knockdown of mini fin and bmp1 results in severe dorsalization resembling the Swirl (swr) and Snailhouse (snh) phenotypes; caused by defects in major zebrafish ventralizing genes bmp2b and bmp7, respectively. We conclude that bmp1 and mfn gene products functionally overlap and are together responsible for a key portion of the Chordin processing activity necessary to formation of the zebrafish dorsoventral axis.  相似文献   

17.
18.
The optic chiasm is an important choice point at which retinal ganglion cell (RGC) axons either cross the midline to innervate the contralateral brain or turn back to innervate the ipsilateral brain. Guidance cues that regulate this decision, particularly those directing the midline crossing of contralateral axons, are still not well understood. Here we show that Sema3d, a secreted semaphorin expressed at the midline, guides the crossing of RGC axons in zebrafish. Both Sema3d knockdown and ubiquitous overexpression induced aberrant ipsilateral projections, suggesting that Sema3d normally guides axons into the contralateral optic tract. Live imaging in vivo showed that RGC growth cones responded to ubiquitous Sema3d overexpression by pausing for extended periods and increasing their exploratory behavior at the midline, suggesting that Sema3d overexpression causes the midline environment to become less favorable for RGC axon extension. Interestingly, Sema3d overexpression did not affect growth cone behaviors before the midline, suggesting that RGC axons normally respond to Sema3d only upon reaching the midline. After Sema3d knockdown, growth cones grew across the midline but then paused or repeatedly retracted, impairing their ability to leave the midline region. Our results indicate that a proper balance of Sema3d is needed at the midline for the progression of RGC axons from the chiasm midline into the contralateral optic tract.  相似文献   

19.
Many teleosts including zebrafish, Danio rerio, actively regulate buoyancy with a gas-filled swimbladder, the volume of which is controlled by autonomic reflexes acting on vascular, muscular, and secretory effectors. In this study, we investigated the morphological development of the zebrafish swimbladder together with its effectors and innervation. The swimbladder first formed as a single chamber, which inflated at 1-3 days posthatching (dph), 3.5-4 mm body length. Lateral nerves were already present as demonstrated by the antibody zn-12, and blood vessels had formed in parallel on the cranial aspect to supply blood to anastomotic capillary loops as demonstrated by Tie-2 antibody staining. Neuropeptide Y-(NPY-) like immunoreactive (LIR) fibers appeared early in the single-chambered stage, and vasoactive intestinal polypeptide (VIP)-LIR fibers and cell bodies developed by 10 dph (5 mm). By 18 dph (6 mm), the anterior chamber formed by evagination from the cranial end of the original chamber; both chambers then enlarged with the ductus communicans forming a constriction between them. The parallel blood vessels developed into an arteriovenous rete on the cranial aspect of the posterior chamber and this region was innervated by zn-12-reactive fibers. Tyrosine hydroxylase- (TH-), NPY-, and VIP-LIR fibers also innervated this area and the lateral posterior chamber. Innervation of the early anterior chamber was also demonstrated by VIP-LIR fibers. By 25-30 dph (8-9 mm), a band of smooth muscle formed in the lateral wall of the posterior chamber. Although gas in the swimbladder increased buoyancy of young larvae just after first inflation, our results suggest that active control of the swimbladder may not occur until after the formation of the two chambers and subsequent development and maturation of vasculature, musculature and innervation of these structures at about 28-30 dph.  相似文献   

20.
Bone morphogenetic proteins (Bmps) are signaling molecules that have been implicated in a variety of inductive processes. We report here that zebrafish Bmp7 is disrupted in snailhouse (snh) mutants. The allele snh(st1) is a translocation deleting the bmp7 gene, while snh(ty68) displays a Val->Gly exhange in a conserved motif of the Bmp7 prodomain. The snh(ty68) mutation is temperature-sensitive, leading to severalfold reduced activity of mutant Bmp7 at 28 degrees C and non-detectable activity at 33 degrees C. This prodomain lesion affects secretion and/or stability of secreted mature Bmp7 after processing has occurred. Both snh(st1) and snh(ty68) mutant zebrafish embryos are strongly dorsalized, indicating that bmp7 is required for the specification of ventral cell fates during early dorsoventral patterning. At higher temperature, the phenotype of snh(ty68) mutant embryos is identical to that caused by the amorphic bmp2b mutation swirl swr(ta72) and similar to that caused by the smad5 mutation somitabun sbn(dtc24). mRNA injection studies and double mutant analyses indicate that Bmp2b and Bmp7 closely cooperate and that Bmp2b/Bmp7 signaling is transduced by Smad5 and antagonized by Chordino.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号