首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amongst the remarkable variety of motility that cells display, cytokinesis (cell division) is particularly striking. Dramatic changes in cell shape occur before, during and after cytokinesis. Myosin II is implicated in the ‘rounding up’ of cells prior to cytokinesis, and is essential in the formation of the contractile cleavage furrow during cytokinesis. Now it appears that myosin II plays a role in all stages of cytokinesis, as a recent report(1) suggests that myosin II drives post-mitotic cell spreading. A similar type of motile mechanism operating in cell spreading may occur in other cell types in other situations.  相似文献   

2.
Cytokinesis is the final step of mitosis when a mother cell is separated into two daughter cells. Major cytoskeletal changes are essential for cytokinesis; it is, however, not well understood how the microtubules and actomyosin cytoskeleton are exactly regulated in time and space. In this paper, we show that during the early stages of cytokinesis, in rounded-up Dictyostelium discoideum cells, the small G-protein Rap1 is activated uniformly at the cell cortex. When cells begin to elongate, active Rap1 becomes restricted from the furrow region, where the myosin contractile ring is subsequently formed. In the final stages of cytokinesis, active Rap1 is only present at the cell poles. Mutant cells with decreased Rap1 activation at the poles showed strongly decreased growth rates. Hyperactivation of Rap1 results in severe growth delays and defective spindle formation in adherent cells and cell death in suspension. Furthermore, Rap mutants show aberrant regulation of the actomyosin cytoskeleton, resulting in extended furrow ingression times and asymmetrical cell division. We propose that Rap1 drives cytokinesis progression by coordinating the three major cytoskeletal components: microtubules, actin, and myosin II. Importantly, mutated forms of Rap also affect cytokinesis in other organisms, suggesting a conserved role for Rap in cell division.  相似文献   

3.
Vesicle trafficking and membrane remodelling in cytokinesis   总被引:1,自引:0,他引:1  
All cells complete cell division by the process of cytokinesis. At the end of mitosis, eukaryotic cells accurately mark the site of division between the replicated genetic material and assemble a contractile ring comprised of myosin II, actin filaments and other proteins, which is attached to the plasma membrane. The myosin-actin interaction drives constriction of the contractile ring, forming a cleavage furrow (the so-called 'purse-string' model of cytokinesis). After furrowing is completed, the cells remain attached by a thin cytoplasmic bridge, filled with two anti-parallel arrays of microtubules with their plus-ends interdigitating in the midbody region. The cell then assembles the abscission machinery required for cleavage of the intercellular bridge, and so forms two genetically identical daughter cells. We now know much of the molecular detail of cytokinesis, including a list of potential genes/proteins involved, analysis of the function of some of these proteins, and the temporal order of their arrival at the cleavage site. Such studies reveal that membrane trafficking and/or remodelling appears to play crucial roles in both furrowing and abscission. In the present review, we assess studies of vesicular trafficking during cytokinesis, discuss the role of the lipid components of the plasma membrane and endosomes and their role in cytokinesis, and describe some novel molecules implicated in cytokinesis. The present review covers experiments performed mainly on tissue culture cells. We will end by considering how this mechanistic insight may be related to cytokinesis in other systems, and how other forms of cytokinesis may utilize similar aspects of the same machinery.  相似文献   

4.
We showed previously that in crane-fly spermatocytes myosin is required for tubulin flux [Silverman-Gavrila and Forer, 2000a: J Cell Sci 113:597-609], and for normal anaphase chromosome movement and contractile ring contraction [Silverman-Gavrila and Forer, 2001: Cell Motil Cytoskeleton 50:180-197]. Neither the identity nor the distribution of myosin(s) were known. In the present work, we used immunofluorescence and confocal microscopy to study myosin during meiosis-I of crane-fly spermatocytes compared to tubulin, actin, and skeletor, a spindle matrix protein, in order to further understand how myosin might function during cell division. Antibodies to myosin II regulatory light chain and myosin II heavy chain gave similar staining patterns, both dependent on stage: myosin is associated with nuclei, asters, centrosomes, chromosomes, spindle microtubules, midbody microtubules, and contractile rings. Myosin and actin colocalization along kinetochore fibers from prometaphase to anaphase are consistent with suggestions that acto-myosin forces in these stages propel kinetochore fibres poleward and trigger tubulin flux in kinetochore fibres, contributing in this way to poleward chromosome movement. Myosin and actin colocalization at the cell equator in cytokinesis, similar to studies in other cells [e.g., Fujiwara and Pollard, 1978: J Cell Biol 77:182-195], supports a role of actin-myosin interactions in contractile ring function. Myosin and skeletor colocalization in prometaphase spindles is consistent with a role of these proteins in spindle formation. After microtubules or actin were disrupted, myosin remained in spindles and contractile rings, suggesting that the presence of myosin in these structures does not require the continued presence of microtubules or actin. BDM (2,3 butanedione, 2 monoxime) treatment that inhibits chromosome movement and cytokinesis also altered myosin distributions in anaphase spindles and contractile rings, consistent with the physiological effects, suggesting also that myosin needs to be active in order to be properly distributed.  相似文献   

5.
Dictyostelium DdINCENP is a chromosomal passenger protein associated with centromeres, the spindle midzone, and poles during mitosis and the cleavage furrow during cytokinesis. Disruption of the single DdINCENP gene revealed important roles for this protein in mitosis and cytokinesis. DdINCENP null cells lack a robust spindle midzone and are hypersensitive to microtubule-depolymerizing drugs, suggesting that their spindles may not be stable. Furthermore DdCP224, a protein homologous to the microtubule-stabilizing protein TOGp/XMAP215, was absent from the spindle midzone of DdINCENP null cells. Overexpression of DdCP224 rescued the weak spindle midzone defect of DdINCENP null cells. Although not required for the localization of the myosin II contractile ring and subsequent formation of a cleavage furrow, DdINCENP is important for the abscission of daughter cells at the end of cytokinesis. Finally, we show that the localization of DdINCENP at the cleavage furrow is modulated by myosin II but it occurs by a mechanism different from that controlling the formation of the contractile ring.  相似文献   

6.
Cytokinesis, the process by which cytoplasm is apportioned between dividing daughter cells, requires coordination of myosin II function, membrane trafficking, and central spindle organization. Most known regulators act during late cytokinesis; a few, including the myosin II–binding proteins anillin and supervillin, act earlier. Anillin''s role in scaffolding the membrane cortex with the central spindle is well established, but the mechanism of supervillin action is relatively uncharacterized. We show here that two regions within supervillin affect cell division: residues 831–1281, which bind central spindle proteins, and residues 1–170, which bind the myosin II heavy chain (MHC) and the long form of myosin light-chain kinase. MHC binding is required to rescue supervillin deficiency, and mutagenesis of this site creates a dominant-negative phenotype. Supervillin concentrates activated and total myosin II at the furrow, and simultaneous knockdown of supervillin and anillin additively increases cell division failure. Knockdown of either protein causes mislocalization of the other, and endogenous anillin increases upon supervillin knockdown. Proteomic identification of interaction partners recovered using a high-affinity green fluorescent protein nanobody suggests that supervillin and anillin regulate the myosin II and actin cortical cytoskeletons through separate pathways. We conclude that supervillin and anillin play complementary roles during vertebrate cytokinesis.  相似文献   

7.
Cellular myosin II is the principal motor responsible for cytokinesis. In higher eukaryotes, phosphorylation of the regulatory light chain (MLC) of myosin II is a primary means of activating myosin II and is known to be crucial for the execution of cell division. Because signals transmitted by the mitotic spindle coordinate key spatial and temporal aspects of cytokinesis, such signals should ultimately function to activate myosin II. Thus, it follows that identification of regulatory factors involved in MLC phosphorylation should elucidate the nature of spindle-derived regulatory signals and lead to a model for how they control cytokinesis. However, the identity of these upstream molecules remains elusive. This review (which is part of the Cytokinesis series) summarizes current views of the regulatory pathway controlling MLC phosphorylation and features four candidate molecules that are likely immediate upstream myosin regulators. I discuss proposed functions for MLCK, ROCK, citron kinase and myosin phosphatase during cytokinesis and consider the possibility of a link between these molecules and the signals transmitted by the mitotic spindle.  相似文献   

8.
Myosin VI plays important roles in endocytic and exocytic membrane-trafficking pathways in cells. Because recent work has highlighted the importance of targeted membrane transport during cytokinesis, we investigated whether myosin VI plays a role in this process during cell division. In dividing cells, myosin VI undergoes dramatic changes in localization: in prophase, myosin VI is recruited to the spindle poles; and in cytokinesis, myosin VI is targeted to the walls of the ingressing cleavage furrow, with a dramatic concentration in the midbody region. Furthermore, myosin VI is present on vesicles moving into and out of the cytoplasmic bridge connecting the two daughter cells. Inhibition of myosin VI activity by small interfering RNA (siRNA)-mediated knockdown or by overexpression of dominant-negative myosin VI tail leads to a delay in metaphase progression and a defect in cytokinesis. GAIP-interacting protein COOH terminus (GIPC), a myosin VI binding partner, is associated with the function(s) of myosin VI in dividing cells. Loss of GIPC in siRNA knockdown cells results in a more than fourfold increase in the number of multinucleated cells. Our results suggest that myosin VI has novel functions in mitosis and that it plays an essential role in targeted membrane transport during cytokinesis.  相似文献   

9.
Similar to higher animal cells, ameba cells of the cellular slime mold Dictyostelium discoideum form contractile rings containing filaments of myosin II during mitosis, and it is generally believed that contraction of these rings bisects the cells both on substrates and in suspension. In suspension, mutant cells lacking the single myosin II heavy chain gene cannot carry out cytokinesis, become large and multinucleate, and eventually lyze, supporting the idea that myosin II plays critical roles in cytokinesis. These mutant cells are however viable on substrates. Detailed analyses of these mutant cells on substrates revealed that, in addition to "classic" cytokinesis which depends on myosin II ("cytokinesis A"), Dictyostelium has two distinct, novel methods of cytokinesis, 1) attachment-assisted mitotic cleavage employed by myosin II null cells on substrates ("cytokinesis B"), and 2) cytofission, a cell cycle-independent division of adherent cells ("cytokinesis C"). Cytokinesis A, B, and C lose their function and demand fewer protein factors in this order. Cytokinesis B is of particular importance for future studies. Similar to cytokinesis A, cytokinesis B involves formation of a cleavage furrow in the equatorial region, and it may be a primitive but basic mechanism of efficiently bisecting a cell in a cell cycle-coupled manner. Analysis of large, multinucleate myosin II null cells suggested that interactions between astral microtubules and cortices positively induce polar protrusive activities in telophase. A model is proposed to explain how such polar activities drive cytokinesis B, and how cytokinesis B is coordinated with cytokinesis A in wild type cells.  相似文献   

10.
Cytokinesis in animal and fungal cells utilizes a contractile actomyosin ring (AMR). However, how myosin II is targeted to the division site and promotes AMR assembly, and how the AMR coordinates with membrane trafficking during cytokinesis, remains poorly understood. Here we show that Myo1 is a two-headed myosin II in Saccharomyces cerevisiae, and that Myo1 localizes to the division site via two distinct targeting signals in its tail that act sequentially during the cell cycle. Before cytokinesis, Myo1 localization depends on the septin-binding protein Bni5. During cytokinesis, Myo1 localization depends on the IQGAP Iqg1. We also show that the Myo1 tail is sufficient for promoting the assembly of a "headless" AMR, which guides membrane deposition and extracellular matrix remodeling at the division site. Our study establishes a biphasic targeting mechanism for myosin II and highlights an underappreciated role of the AMR in cytokinesis beyond force generation.  相似文献   

11.
We demonstrate that the contractile ring protein anillin interacts directly with nonmuscle myosin II and that this interaction is regulated by myosin light chain phosphorylation. We show that despite their interaction, anillin and myosin II are independently targeted to the contractile ring. Depletion of anillin in Drosophila or human cultured cells results in cytokinesis failure. Human cells depleted for anillin fail to properly regulate contraction by myosin II late in cytokinesis and fail in abscission. We propose a role for anillin in spatially regulating the contractile activity of myosin II during cytokinesis.  相似文献   

12.
Cell division after mitosis is mediated by ingression of an actomyosin-based contractile ring. The active, GTP-bound form of the small GTPase RhoA is a key regulator of contractile-ring formation. RhoA concentrates at the equatorial cell cortex at the site of the nascent cleavage furrow. During cytokinesis, RhoA is activated by its RhoGEF, ECT2. Once activated, RhoA promotes nucleation, elongation, and sliding of actin filaments through the coordinated activation of both formin proteins and myosin II motors (reviewed in [1, 2]). Anillin is a 124 kDa protein that is highly concentrated in the cleavage furrow in numerous animal cells in a pattern that resembles that of RhoA [3-7]. Although anillin contains conserved N-terminal actin and myosin binding domains and a PH domain at the C terminus, its mechanism of action during cytokinesis remains unclear. Here, we show that human anillin contains a conserved C-terminal domain that is essential for its function and localization. This domain shares homology with the RhoA binding protein Rhotekin and directly interacts with RhoA. Further, anillin is required to maintain active myosin in the equatorial plane during cytokinesis, suggesting it functions as a scaffold protein to link RhoA with the ring components actin and myosin. Although furrows can form and initiate ingression in the absence of anillin, furrows cannot form in anillin-depleted cells in which the central spindle is also disrupted, revealing that anillin can also act at an early stage of cytokinesis.  相似文献   

13.
Polar body formation is an essential step in forming haploid eggs from diploid oocytes. This process involves completion of a highly asymmetric cytokinesis that results in a large egg and two small polar bodies. Unlike mitotic contractile rings, polar body contractile rings assemble over one spindle pole so that the spindle must move through the contractile ring before cytokinesis. During time-lapse imaging of C. elegans meiosis, the contractile ring moved downward along the length of the spindle and completed scission at the midpoint of the spindle, even when spindle length or rate of ring movement was increased. Patches of myosin heavy chain and dynamic furrowing of the plasma membrane over the entire embryo suggested that global cortical contraction forces the meiotic spindle and overlying membrane out through the contractile ring center. Consistent with this model, depletion of myosin phosphatase increased the velocity of ring movement along the length of the spindle. Global dynamic furrowing, which was restricted to anaphase I and II, was dependent on myosin II, the anaphase promoting complex and separase, but did not require cortical contact by the spindle. Large cortical patches of myosin during metaphase I and II indicated that myosin was already in the active form before activation of separase. To identify the signal at the midpoint of the anaphase spindle that induces scission, we depleted two proteins that mark the exact midpoint of the spindle during late anaphase, CYK-4 and ZEN-4. Depletion of either protein resulted in the unexpected phenotype of initial ingression of a polar body ring with twice the diameter of wild type. This phenotype revealed a novel mechanism for minimizing polar body size. Proteins at the spindle midpoint are required for initial ring ingression to occur close to the membrane-proximal spindle pole.  相似文献   

14.
During cytokinesis, constriction of a cortical contractile ring generates a furrow that partitions one cell into two. The contractile ring contains three filament systems: actin, bipolar myosin II filaments, and septins, GTP-binding hetero-oligomers that polymerize to form a membrane-associated lattice. The contractile ring also contains a potential filament crosslinker, Anillin, that binds all three filament types. Here, we show that the contractile ring possesses an intrinsic symmetry-breaking mechanism that promotes asymmetric furrowing. Asymmetric ingression requires Anillin and the septins, which promote the coalescence of components on one side of the contractile ring, but is insensitive to a 10-fold reduction in myosin II levels. When asymmetry is disrupted, cytokinesis becomes sensitive to partial inhibition of contractility. Thus, asymmetric furrow ingression, a prevalent but previously unexplored feature of cell division in metazoans, is generated by the action of two conserved furrow components and serves a mechanical function that makes cytokinesis robust.  相似文献   

15.
At mitosis, cells undergo drastic alterations in morphology and cytoskeletal organization including cell rounding during prophase, mitotic spindle assembly during prometaphase and metaphase, chromatid segregation in anaphase, and cytokinesis during telophase. It is well established that myosin II is a motor responsible for cytokinesis. Recent reports have indicated that myosin II is also involved in spindle assembly and karyokinesis. In this review, we summarize current understanding of the functions of myosin II in mitosis and cytokinesis of higher eukaryotes, and discuss the roles of possible upstream molecules that control myosin II in these mitotic events.  相似文献   

16.
Cell division is inherently mechanical, with cell mechanics being a critical determinant governing the cell shape changes that accompany progression through the cell cycle. The mechanical properties of symmetrically dividing mitotic cells have been well characterized, whereas the contribution of cellular mechanics to the strikingly asymmetric divisions of female meiosis is very poorly understood. Progression of the mammalian oocyte through meiosis involves remodeling of the cortex and proper orientation of the meiotic spindle, and thus we hypothesized that cortical tension and stiffness would change through meiotic maturation and fertilization to facilitate and/or direct cellular remodeling. This work shows that tension in mouse oocytes drops about sixfold during meiotic maturation from prophase I to metaphase II and then increases ∼1.6-fold upon fertilization. The metaphase II egg is polarized, with tension differing ∼2.5-fold between the cortex over the meiotic spindle and the opposite cortex, suggesting that meiotic maturation is accompanied by assembly of a cortical domain with stiffer mechanics as part of the process to achieve asymmetric cytokinesis. We further demonstrate that actin, myosin-II, and the ERM (Ezrin/Radixin/Moesin) family of proteins are enriched in complementary cortical domains and mediate cellular mechanics in mammalian eggs. Manipulation of actin, myosin-II, and ERM function alters tension levels and also is associated with dramatic spindle abnormalities with completion of meiosis II after fertilization. Thus, myosin-II and ERM proteins modulate mechanical properties in oocytes, contributing to cell polarity and to completion of meiosis.  相似文献   

17.
Cytokinesis involves two phases: 1) membrane ingression followed by 2) membrane abscission. The ingression phase generates a cleavage furrow and this requires co-operative function of the actin-myosin II contractile ring and septin filaments. We demonstrate that the actin-binding protein, EPLIN, locates to the cleavage furrow during cytokinesis and this is possibly via association with the contractile ring components, myosin II, and the septin, Sept2. Depletion of EPLIN results in formation of multinucleated cells and this is associated with inefficient accumulation of active myosin II (MRLCS19) and Sept2 and their regulatory small GTPases, RhoA and Cdc42, respectively, to the cleavage furrow during the final stages of cytokinesis. We suggest that EPLIN may function during cytokinesis to maintain local accumulation of key cytokinesis proteins at the furrow.  相似文献   

18.
The ability of Dictyostelium cells to divide without myosin II in a cell cycle-coupled manner has opened two questions about the mechanism of cleavage furrow ingression. First, are there other possible functions for myosin II in this process except for generating contraction of the furrow by a sliding filament mechanism? Second, what could be an alternative mechanical basis for the furrowing? Using aberrant changes of the cell shape and anomalous localization of the actin-binding protein cortexillin I during asymmetric cytokinesis in myosin II-deficient cells as clues, it is proposed that myosin II filaments act as a mechanical lens in cytokinesis. The mechanical lens serves to focus the forces that induce the furrowing to the center of the midzone, a cortical region where cortexillins are enriched in dividing cells. Additionally, continual disassembly of a filamentous actin meshwork at the midzone is a prerequisite for normal ingression of the cleavage furrow and a successful cytokinesis. If this process is interrupted, as it occurs in cells that lack cortexillins, an overassembly of filamentous actin at the midzone obstructs the normal cleavage. Disassembly of the crosslinked actin network can generate entropic contractile forces in the cortex, and may be considered as an alternative mechanism for driving ingression of the cleavage furrow. Instead of invoking different types of cytokinesis that operate under attached and unattached conditions in Dictyostelium, it is anticipated that these cells use a universal multifaceted mechanism to divide, which is only moderately sensitive to elimination of its constituent mechanical processes.  相似文献   

19.
Animal cell division is believed to be mediated primarily by the 'purse-string' mechanism, which entails furrowing of the equatorial region, driven by the interaction of actin and myosin II filaments within contractile rings. However, myosin II-null Dictyostelium cells on substrates divide efficiently in a cell cycle-coupled manner. This process, termed cytokinesis B, appears to be driven by polar traction forces. Data in the literature can be interpreted as suggesting that adherent higher animal cells also use a cytokinesis B-like mechanism for cytokinesis. An additional chemotaxis-based cytokinesis that involves a 'midwife' cell has also been reported. Collectively, these findings demonstrate an unexpected diversity of mechanisms by which animal cells carry out cytokinesis.  相似文献   

20.
BACKGROUND: Animal cell cytokinesis is characterized by a sequence of dramatic cortical rearrangements. How these are coordinated and coupled with mitosis is largely unknown. To explore the initiation of cytokinesis, we focused on the earliest cell shape change, cell elongation, which occurs during anaphase B and prior to cytokinetic furrowing. RESULTS: Using RNAi and live video microscopy in Drosophila S2 cells, we implicate Rho-kinase (Rok) and myosin II in anaphase cell elongation. rok RNAi decreased equatorial myosin II recruitment, prevented cell elongation, and caused a remarkable spindle defect where the spindle poles collided with an unyielding cell cortex and the interpolar microtubules buckled outward as they continued to extend. Disruption of the actin cytoskeleton with Latrunculin A, which abolishes cortical rigidity, suppressed the spindle defect. rok RNAi also affected furrowing, which was delayed and slowed, sometimes distorted, and in severe cases blocked altogether. Codepletion of the myosin binding subunit (Mbs) of myosin phosphatase, an antagonist of myosin II activation, only partially suppressed the cell-elongation defect and the furrowing delay, but prevented cytokinesis failures induced by prolonged rok RNAi. The marked sensitivity of cell elongation to Rok depletion was highlighted by RNAi to other genes in the Rho pathway, such as pebble, racGAP50C, and diaphanous, which had profound effects on furrowing but lesser effects on elongation. CONCLUSIONS: We show that cortical changes underlying cell elongation are more sensitive to depletion of Rok and myosin II, in comparison to other regulators of cytokinesis, and suggest that a distinct regulatory pathway promotes cell elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号