首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of cell adhesion by type V collagen.   总被引:1,自引:0,他引:1  
Human umbilical vein endothelial cells grew well in dishes coated with collagen types I, II, III, or IV. However, the same cells tended to detach themselves from dishes coated with type V collagen, and cell proliferation in these dishes was inhibited. Such anti-adhesive activity was partially retained by heat-denatured type V collagen or by its alpha 1 chain, but not by its alpha 2 chain. Several other cell types did not adhere to the type V collagen substratum even in the presence of 10% serum. The cell types strongly inhibited from adhering by type V collagen included Swiss mouse 3T3 cells and their MSV-transformants, BALB/c 3T3 cells and their methylcholanthrene-transformants, NIH 3T3 cells and their ras-transformants, BHK cells, CHO-9 cells, CHO-K1 cells, and mouse melanoma B16-F10 cells. Using Swiss mouse 3T3, we studied the effects of type V collagen on cell adhesion to fibronectin in serum-free medium. When the culture dishes were coated with a mixture of fibronectin with various concentrations of type V collagen, the adhesion of the cells was inhibited depending on the concentration of type V collagen. The inhibition of cell adhesion by type V collagen was competitively overcome by increased concentrations of fibronectin. The activity that interferes with the effects of fibronectin was retained mainly by the alpha 1 chain of heat-denatured type V collagen.  相似文献   

2.
In the integrin family, the collagen receptors form a structurally and functionally distinct subgroup. Two members of this subgroup, alpha(1)beta(1) and alpha(2)beta(1) integrins, are known to bind to monomeric form of type I collagen. However, in tissues type I collagen monomers are organized into large fibrils immediately after they are released from cells. Here, we studied collagen fibril recognition by integrins. By an immunoelectron microscopy method we showed that integrin alpha(2)I domain is able to bind to classical D-banded type I collagen fibrils. However, according to the solid phase binding assay, the collagen fibril formation appeared to reduce integrin alpha(1)I and alpha(2)I domain avidity to collagen and to lower the number of putative alphaI domain binding sites on it. Respectively, cellular alpha(1)beta(1) integrin was able to mediate cell spreading significantly better on monomeric than on fibrillar type I collagen matrix, whereas alpha(2)beta(1) integrin appeared still to facilitate both cell spreading on fibrillar type I collagen matrix and also the contraction of fibrillar type I collagen gel. Additionally, alpha(2)beta(1) integrin promoted the integrin-mediated formation of long cellular projections typically induced by fibrillar collagen. Thus, these findings suggest that alpha(2)beta(1) integrin is a functional cellular receptor for type I collagen fibrils, whereas alpha(1)beta(1) integrin may only effectively bind type I collagen monomers. Furthermore, when the effect of soluble alphaI domains on type I collagen fibril formation was tested in vitro, the observations suggest that integrin type collagen receptors might guide or even promote pericellular collagen fibrillogenesis.  相似文献   

3.
Type V collagen selectively inhibits human endothelial cell proliferation   总被引:3,自引:0,他引:3  
Type V collagen from human placenta remarkably inhibited human umbilical vein endothelial cell (HUVEC) proliferation in a dose-dependent manner when coated on the culture dishes. Other types of collagen (I, III, IV) and fibronectin enhanced HUVEC proliferation under the same conditions. The inhibitory activity of type V collagen was seen not only when it was coated on the dishes, but also when it was directly added into cell culture. The attachment effect of type V collagen did not differ from that of type I collagen. The inhibitory activity is a phenomenon selective for endothelial cells, since type V collagen did not affect the proliferation of human umbilical vein smooth muscle cells, aortic smooth muscle cells, or nasal mucosa fibroblasts.  相似文献   

4.
Cell adhesion strength is important to cell survival, proliferation, migration, and mechanotransduction, yet changes in endothelial cell adhesion strength have not yet been examined in diseases such as diabetes with high rates of cardiovascular complications. We therefore investigated porcine aortic endothelial cell adhesion strength on native and glycated collagen‐coated substrates and in low, normal, and high glucose culture using a spinning disc apparatus. Adhesion strength increased by 30 dynes/cm2 in cells on glycated collagen as compared to native collagen. Attachment studies revealed that cells use higher adhesion strength αvβ3 integrins to bind to glycated collagen instead of the typical α2β1 integrins used to bind to native collagen. Similarly, endothelial cells cultured in low and high glucose had 15 dynes/cm2 higher adhesion strength than cells in normal glucose after 2 days. Increased adhesion strength was due to elevated VEGF release and intracellular PKC in low and high glucose cells, respectively. Thus glucose increased endothelial cell adhesion strength via different underlying mechanisms. These adhesion strength changes could contribute to diabetic vascular disease, including accelerated atherosclerosis and disordered angiogenesis. J. Cell. Physiol. 228: 1727–1736, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Laminin and type IV collagen were compared for the ability to promote aortic endothelial cell adhesion and directed migration in vitro. Substratum-adsorbed IV promoted aortic endothelial cell adhesion in a concentration dependent fashion attaining a maximum level 141-fold greater than controls within 30 min. Aortic endothelial cell adhesion to type IV collagen was not inhibited by high levels (10(-3) M) of arginyl-glycyl-aspartyl-serine. In contrast, adhesion of aortic endothelial cells on laminin was slower, attaining only 53% of the adhesion observed on type IV collagen by 90 min. Type IV collagen when added to the lower well of a Boyden chamber stimulated the directional migration of aortic endothelial cells in a concentration dependent manner with a maximal response 6.9-fold over control levels, whereas aortic endothelial cells did not migrate in response to laminin at any concentration (.01-2.0 X 10(-7) M). Triple helix-rich fragments of type IV collagen were nearly as active as intact type IV collagen in stimulating both adhesion and migration whereas the carboxy terminal globular domain was less active at promoting adhesion (36% of the adhesion promoted by intact type IV collagen) or migration. Importantly, aortic endothelial cells also migrate to substratum adsorbed gradients of type IV collagen suggesting that the mechanism of migration is haptotactic in nature. These results demonstrate that the aortic endothelial cell adhesion and migration is preferentially promoted by type IV collagen compared with laminin, and has a complex molecular basis which may be important in angiogenesis and large vessel repair.  相似文献   

6.
7.
Two human type V collagen sub-molecular species, designated [α1(V)]2α2(V) and α1(V)α2(V)α3(V), were purified chromatographically from a commercially available preparation, in which cystine-rich collagenous contaminants were contained, with a column packed with Fractogel EMD SO3. From bovine crude preparations, the [α1(V)]2α2(V) form free from the collagenous contaminants was purified. Type V collagen subunit chains were isolated from each type V collagen molecule by anion-exchange HPLC with a Bakerbond PEI Scout column. The highly purified human type V collagen molecules and their subunit chains were used to examine the inhibitory effect on human umbilical vein endothelial cell proliferation. It was confirmed that the α1(V) chain has inhibitory activity and it was found that the inhibitory effect of the [α1(V)]2α2(V) form is stronger than that of the α1(V)α2(V)α3(V) form and that the α3(V) chain has no inhibitory activity.  相似文献   

8.
Cartilage is a hypocellular tissue in which a balance of matrix molecules, especially aggrecan and link protein, play a critical role in maintaining structural integrity. To study the role of aggrecan and link protein in mediating cell activities, we have stably expressed them in NIH/3T3 fibroblasts and observed the effect on cell-substratum interactions. Overexpression of either protein destabilized the cell-substratum interaction. However, when both were co-expressed, the interaction between cell and substratum was less impaired. Similar results were obtained on type II collagen-coated plates. The addition of exogenous gene products into fibroblast cell lines and chondrocyte culture had the same effect as expression of the genes. The addition of exogenous hyaluronan to the growth medium or treatment of cells with hyaluronidase also decreased cell adhesion, indicating that hyaluronan also plays a role in the cell-substratum adhesion. The presence of aggrecan seems to increase the amount of link protein on the cell surface. Chondrocytes expressing high concentrations of aggrecan and link protein were maintained within a matrix network and were able to survive in suspended culture. Imbalances in aggrecan or link protein concentrations, or degradation of hyaluronan, disrupted the network and caused the chondrocytes to aggregate or adhere to the plates.  相似文献   

9.
Biosynthetic and structural properties of endothelial cell type VIII collagen   总被引:16,自引:0,他引:16  
A highly unusual endothelial cell collagen (Sage, H., Pritzl, P., and Bornstein, P., (1980) Biochemistry 19, 5747-5755) has been characterized in greater detail. Pulse-chase experiments with bovine aortic endothelial cells revealed two nondisulfide-bonded collagens, of apparent chain Mr = 177,000 and 125,000, with an estimated synthesis and secretion time of 75 min. Stepwise, quantitative processing to stable lower molecular weight forms as described for type I procollagen was not observed. Endothelial collagen was secreted over a temperature range of 24-37 degrees C and, prior to heat denaturation, did not display affinity for a gelatin-binding fragment of fibronectin coupled to Sepharose. The presence of a pepsin-resistant domain (Mr = 50,000) in both the soluble and cell layer-associated forms of this protein was shown by ion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Endothelial collagen was cleaved by vertebrate collagenase into several discrete fragments that differed in molecular weight from the characteristic alpha A and alpha B fragments generated from the interstitial collagens. Nontriple helical domains corresponding to the NH2- and COOH-terminal propeptides of other procollagen types were not found after incubation of endothelial collagen with bacterial collagenase. Additional evidence for the lack of extended noncollagenous sequences was provided by studies with mast cell proteases, which convert native procollagen to collagen but are unreactive toward native interstitial collagens. Endothelial collagen was not cleaved by these enzymes at 37 degrees C, but, as observed for interstitial collagen alpha chains, required prior heating at elevated temperatures for cleavage to occur. In view of this unique set of structural characteristics, and a distribution that is not restricted to the endothelium, we have designated this protein as type VIII collagen.  相似文献   

10.
An expression vector pTF7520-Col-V-In, which encodes a fusion protein of the cell-binding domain of fibronectin (C277) and the insulin- and heparin-binding domain of the alpha 1 chain of human type V collagen, was constructed. E. coli transfected with this plasmid synthesized a 50-kDa fusion protein. This fusion protein, C277-V, was purified from the crude extract by a single step heparin HPLC. Similar amounts of insulin bound to purified C277-V and to the alpha 1 chain of type V collagen as judged by the binding of peroxidase-conjugated insulin. Cell-adhesive activity of C277-V was lower than that of the original fibronectin fragment C274, but similar numbers of cells adhered to both protein substrates when the culture dishes were coated with 1 mM of each protein. Insulin bound to the C277-V substratum stimulated the growth of mouse mammary tumor MTD cells in serum-free culture medium.  相似文献   

11.
《The Journal of cell biology》1984,99(4):1416-1423
MDW4, a wheat germ agglutinin-resistant nonmetastatic mutant of the highly metastatic murine tumor cell line called MDAY-D2 has previously been shown to attach to fibronectin and type IV collagen, whereas MDAY- D2 and phenotypic revertants of MDW4 attached poorly to these substrates. The increased adhesiveness of the mutant cells appeared to be closely related to a lesion in cell surface carbohydrate structures. In an effort to identify the carbohydrates involved in cell attachment, glycopeptides isolated from mutant and wild-type cells as well as from purified glycoproteins were tested for their ability to inhibit the attachment of MDW4 cells to plastic surfaces coated with fibronectin, laminin, or type IV collagen. The addition of mannose-terminating glycopeptide to the adhesion assay inhibited MDW4 cell attachment to type IV collagen. In contrast, a sialylated poly N-acetyllactosamine- containing glycopeptide, isolated from wheat germ agglutinin-sensitive MDAY-D2 cells but absent in MDW4 cells, inhibited MDW4 attachment to laminin. None of the glycopeptides used in this study inhibited attachment of MDW4 cells to fibronectin-coated plastic. Peptide N- glycosidase treatment of the cells to remove surface asparagine-linked oligosaccharides inhibited MDW4 adhesion to type IV collagen, but not to laminin, and the same treatment of the wheat germ agglutinin- sensitive cells enhanced attachment to laminin. Tumor cell attachment to, and detachment from, the sublaminal matrix protein laminin and type IV collagen are thought to be important events in the metastatic process. Our results indicate that tumor cell attachment to these proteins may be partially modulated by the expression of specific oligosaccharide structures associated with the cell surface.  相似文献   

12.
Membrane glycoproteins involved in hepatocyte adhesion to collagen type I   总被引:1,自引:0,他引:1  
Liver membrane glycoproteins with affinity for immobilized collagen type I were subjected to preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by electroelution of the separated proteins. Electroeluted glycoproteins with ability to neutralize the inhibitory effect of anti-CollCAM antibodies on hepatocyte adhesion to collagen were collected from several consecutive runs and used to raise a high titer antiserum, denoted anti-CollCAM II. IgG from this antiserum inhibited the attachment of hepatocytes to dishes coated with collagen type I, but not to fibronectin- or collagen type IV-coated dishes. When the antibodies were immobilized to Sepharose CL-4B they bound three sets of glycoproteins with apparent Mr's of 105,000, 115,000, and 130,000 as analyzed by SDS-PAGE under nonreducing (NR) conditions. Upon reduction (R) the glycoproteins migrated with apparent Mr's of 115,000, 130,000, and 160,000, respectively. The Mr 105,000-115,000 (NR) glycoproteins effectively neutralized the inhibitory effect exerted by both anti-CollCAM and anti-CollCAM II antibodies, on hepatocyte spreading and attachment to collagen type I substrates. Peptide mapping suggested the Mr 160,000 (R) species to be different from the Mr 115,000 (R).  相似文献   

13.
We examined the inhibitory activity of type V collagen on cell attachment and cell growth and the role of stress fibers and beta 1 integrin in cultured human endothelial cells. Human endothelial cells cultured on type V collagen attached temporarily to the substrate and formed stress fibers. However, the cells failed to proliferate and gradually detached from the substrate. After 24 h, the cells on type V collagen lacked discernible stress fibers (F-actin filaments) and exhibited dots in small aggregates of F-actin. In addition, the cells expressed little or no proteins as focal adhesions, including vinculin and beta 1 integrin. In contrast, the cells on fibronectin and type I collagen formed complete F-actin filaments, exhibited sufficient vinculin and beta 1 integrin, and grew logarithmically from 2 days. On the other hand, human smooth muscle cells formed complete F-actin filaments, revealed typical focal adhesions, and started to proliferate rapidly after 24 h on type V collagen as well as on fibronectin and type I collagen. Thus, the disassembly of F-actin filaments was observed as a specific phenomenon in human endothelial cells cultured on type V collagen. Moreover, the F-actin filaments disappeared from endothelial cells treated with cytochalasin D after 24 h and the cells detached from fibronectin and type I collagen with time, a result consistent with the observations on type V collagen. Accordingly, the disassembly of F-actin filaments in focal adhesions may result in the detachment of endothelial cells from type V collagen.  相似文献   

14.
Collagen-proteoglycan interactions participate in the regulation of matrix assembly and in cell-matrix interactions. We reported previously that a fragment (Ile824-Pro950) of the collagen alpha1(V) chain, HepV, binds to heparin via a cluster of three major basic residues, Arg912, Arg918, and Arg921, and two additional residues, Lys905 and Arg909 (Delacoux, F., Fichard, A., Cogne, S., Garrone, R., and Ruggiero, F. (2000) J. Biol. Chem. 275, 29377-29382). Here, we further characterized the binding of HepV and collagen V to heparin and heparan sulfate by surface plasmon resonance assays. HepV bound to heparin and heparan sulfate with a similar affinity (KD approximately 18 and 36 nM, respectively) in a cation-dependent manner, and 2-O-sulfation of heparin was shown to be crucial for the binding. An octasaccharide of heparin and a decasaccharide of heparan sulfate were required for HepV binding. Studies with HepV mutants showed that the same basic residues were involved in the binding to heparin, to heparan sulfate, and to the cell surface. The contribution of Lys905 and Arg909 was found to be significant. The triple-helical peptide GPC(GPP)5G904-R918(GPP)5GPC-NH2 and native collagen V molecules formed much more stable complexes with heparin than HepV, and collagen V bound to heparin/heparan sulfate with a higher affinity (in the nanomolar range) than HepV. Heat and chemical denaturation strongly decreased the binding, indicating that the triple helix plays a major role in stabilizing the interaction with heparin. Collagen V and HepV may play different roles in cell-matrix interactions and in matrix assembly or remodeling mediated by their specific interactions with heparan sulfate.  相似文献   

15.
We reported previously that human fibroblasts form clumps when cultured on a dish coated with reconstituted type V collagen fibrils. Essentially all the type V collagen fibrils, initially coated on the dish, were recovered in the cell clumps that had eventually formed during the culture. We interpreted that type V collagen fibrils adhere to cells more strongly than to the dish and are detached by cell movements. In this study, type V collagen was suspended with fibroblasts to examine the fate of the type V collagen fibrils and to determine whether the fibrils affect the behaviour of the cells directly adherent to the dish. The added type V collagen accumulated in the intercellular space concomitantly with the local aggregation of fibroblasts. scanning electron microscope examination indicated that type V collagen fibrils were found in the vicinity of cells in cultures without ascorbic acid where essentially no collagen secretion takes place. These results indicate that type V collagen forms fibrils and the fibrils are accumulated in the intercellular spaces. The accumulated type V collagen fibrils work as a cementing material for cell clump formation. This phenomenon is discussed in relation to the possible involvement of type V collagen fibrils in tissue organization.  相似文献   

16.
Non-enzymatic glycation of type I collagen occurs in aging and diabetes, and may affect collagen solubility, charge, polymerization, and intermolecular interactions. Proteoglycans(1) (PGs) bind type I collagen and are proposed to regulate fibril assembly, function, and cell-collagen interactions. Moreover, on the collagen fibril a keratan sulfate (KS) PG binding region overlaps with preferred collagen glycation sites. Thus, we examined the effect of collagen modified by simple glycation on PG-collagen interactions. By affinity coelectrophoresis (ACE), we found reduced affinities of heparin and KSPGs for glycated but not normal collagen, whereas the dermatan sulfate (DS)PGs decorin and biglycan bound similarly to both, and that the affinity of heparin for normal collagen decreased with increasing pH. Circular dichroism (CD) spectroscopy revealed normal and glycated collagens to assume triple helical conformations, but heparin addition caused precipitation and decreased triple helical content-effects that were more marked with glycated collagen. A spectrophotometric assay revealed slower polymerization of glycated collagen. However, ultrastructural analyses indicated that fibrils assembled from normal and glycated collagen exhibited normal periodicity, and had similar structures and comparable diameter distributions. B-cells expressing the cell surface heparan sulfate PG syndecan-1 adhered well to normal but not glycated collagen, and endothelial cell migration was delayed on glycated collagen. We speculate that glycation diminishes the electrostatic interactions between type I collagen and PGs, and may interfere with core protein-collagen associations for KSPGs but not DSPGs. Therefore in vivo, collagen glycation may weaken PG-collagen interactions, thereby disrupting matrix integrity and cell-collagen interactions, adhesion, and migration.  相似文献   

17.
Cellular adhesion to collagen   总被引:4,自引:0,他引:4  
BALB/3T3 cells were released from tissue culture plates with EGTA, and their rates of attachment to collagen gels polymerized on Millipore filters; were measured. Cell attachment in serum-free medium was 20–50% of that which occurred in medium containing 10% fetal calf serum (FCS). Cell attachment to gels pretreated with FCS and assayed in serum-free medium was identical with that of gels in FCS-containing medium. Thus, it seems there are two separate mechanisms of attachment to collagen; one involving direct attachment and a second mediated by a serum component(s) which binds to collagen.  相似文献   

18.
Cell surface galactosyltransferase (GalTase) has been previously shown to mediate cell spreading or migration on laminin matrices. This work demonstrates that 3T3 cell surface GalTase also mediates cell attachment to collagen type IV. Attachment to collagen type IV was blocked by perturbations of GalTase or substrate pregalactosylation on cells possessing only calcium-dependent mechanisms of adhesion. Cells with both calcium-dependent and calcium-independent systems were not affected by GalTase perturbation. Collagen type IV was shown to possess GalTase substrates since matrices could be galactosylated by both soluble enzyme and 3T3 cells.  相似文献   

19.
The TEM8 gene is selectively expressed in tumor versus normal blood vessels, though its function in endothelial cell biology is not known. Towards the goal of clarifying this function, we tested whether TEM8 overexpression, or blocking TEM8's function with a dominant negative protein, would modulate endothelial cell activities. We found that TEM8-expressing endothelial cells migrated at a rate 3-fold greater than control cells in a monolayer denudation assay. Also, the addition of recombinant TEM8 extracellular domain (TEM8-ED) specifically inhibited both chemokinetic and chemotactic migration on collagen in the denudation and Boyden chamber assays, respectively. The TEM8-ED binds preferentially to collagen, and TEM8 expression enhanced endothelial adhesion to collagen 3-fold; the latter response was antagonized by the TEM8-ED. Consistent with the TEM8-ED acting as a dominant negative inhibitor of endogenously expressed protein were data showing that the TEM8-ED had no effect on the activation of beta1 integrin. TEM8 protein is present in human umbilical vein in situ and is expressed in low passage HUVEC in vitro. TEM8 protein expression in HUVEC was increased 5-fold by the initiation of tube formation, correlating expression of TEM8 with the angiogenic response. Taken together, these results indicate that TEM8 plays a positive role in endothelial cell activities related to angiogenesis.  相似文献   

20.
Type XVII collagen (BP180) is a keratinocyte transmembrane protein that exists as the full-length protein in hemidesmosomes and as a 120-kDa shed ectodomain in the extracellular matrix. The largest collagenous domain of type XVII collagen, COL15, has been described previously as a cell adhesion domain (Tasanen, K., Eble, J. A., Aumailley, M., Schumann, H., Baetge, J, Tu, H., Bruckner, P., and Bruckner-Tuderman, L. (2000) J. Biol. Chem. 275, 3093-3099). In the present work, the integrin binding of triple helical, human recombinant COL15 was tested. Solid phase binding assays using recombinant integrin alpha(1)I, alpha(2)I, and alpha(10)I domains and cell spreading assays with alpha(1)beta(1)- and alpha(2)beta(1)-expressing Chinese hamster ovary cells showed that, unlike other collagens, COL15 was not recognized by the collagen receptors. Denaturation of the COL15 domain increased the spreading of human HaCaT keratinocytes, which could migrate on the denatured COL15 domain as effectively as on fibronectin. Spreading of HaCaT cells on the COL15 domain was mediated by alpha(5)beta(1) and alpha(V)beta(1) integrins, and it could be blocked by RGD peptides. The collagen alpha-chains in the COL15 domain do not contain RGD motifs but, instead, contain 12 closely related KGD motifs, four in each of the three alpha-chains. Twenty-two overlapping, synthetic peptides corresponding to the entire COL15 domain were tested; three peptides, all containing the KGD motif, inhibited the spreading of HaCaT cells on denatured COL15 domain. Furthermore, this effect was lost by mutation from D to E (KGE instead of KGD). We suggest that the COL15 domain of type XVII collagen represents a specific collagenous structure, unable to interact with the cellular receptors for other collagens. After being shed from the cell surface, it may support keratinocyte spreading and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号