首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endodermis in the needles of Pinus pinaster was examined with light and electron microscopy. The endodermis is composed of very long, radially flattened cells, filled with a large central vacuole, which contains spherical dense bodies whose concentration decreases from the ends of the cell to the middle part. They are individually surrounded by a fine granular matrix. The central vacuole is bounded by a thick tonoplast. Other small, clear vacuoles are limited by a thin tonoplast. The parietal cytoplasm contains relatively few ribosomes, long slender chloroplasts, and lipid bodies. The smooth endoplasmic reticulum is highly developed along the tangential walls and frequently connected, or apposed, to the plasma membrane. Numerous primary pit fields are seen in the radial walls which are lignified and in the tangential walls; the latter exhibit a characteristic loosening of the outer layer of the wall. The lipid bodies are connected to endoplasmic reticulum tubules. The role of the endodermis in the active transport of water inside the needle is discussed in reference to previous physiological studies. The chemical composition of the vacuolar dense bodies is as yet unknown.  相似文献   

2.
The ultrastructure of corpus allatum of the earwig, Euborellia annulipes has been described. The corpus allatum (CA) is an oval body. The gland is covered by a thin stromal sheath which is wavey and acellular in composition. The gland consists of either parenchymal cells with distinct, double-layered, smooth or slightly undulated plasma-membranes. Golgi bodies and endoplasmic reticulum are poorly developed. The mitochondria are found in abundance and are oval, spherical, elongate, and Y-shaped, with oblique and longitudinal cristae. The gland is innervated by neurosecretory and non-neurosecretory axons. The neurosecretory axons are of two types. The type NS-II, contain electron dense granules of 40...120 nm in diameter and the type NS-I, small less electron dense granules (of mixed nature) 40...90 nm in diameter. Branches of tracheoles also occur that penetrate the gland. The large electron dense granules 100...220 nm in diameter occuring abundantly in aorta, and representing the secretions of the medial A-cells are absent in the CA.  相似文献   

3.
SYNOPSIS. The distribution of acid phosphatase was investigated at the ultrastructural level in Paramecium caudatum. Acid phosphatase occurs in endoplasmic reticulum, Golgi apparatus, food vacuoles, autophagic vesicles, vacuolar and dense bodies. Some slight deposits are also seen in the mitochondria.
These observations point out that this hydrolase activity is related to digestive processes. The enzyme, originating from the endoplasmic reticulum and Golgi apparatus reaches the food vacuole or autophagic vesicle likely via the reticulum. The digestion of the bacteria or of the enclosed organelle gives rise to electronopaque material which is later found in dense bodies. These dense bodies are likely secondary lysosomes and it is possible that they may fuse with the young food vacuole or with autophagic vesicles.  相似文献   

4.
Differentiating oocytes and associated follicle cells of two species of amphineurans (Mollusca) Mopalia muscosa and Chaetopleura apiculata have been studied by techniques of light and electron microscopy. In addition to the regularly occurring organelles, the ooplasm of young oocytes contains large, randomly situated, basophilic regions. These regions are not demonstrable in mature eggs. As oocytes differentiate, lipid, pigment and protein-carbohydrate yolk bodies accumulate within the ooplasm. Concomitant with the appearance of pigment and the protein carbohydrate containing yolk bodies, the saccules of the Golgi complex become filled with a dense material. Associated with the Golgi complex are cisternae of the rough endoplasmic reticulum which are filled with an electron opaque substance which is thought to be composed of protein synthesized by this organelle. That portion of the cisternae of the endoplasmic reticulum facing the Golgi complex shows evaginations. These evaginations are thought to finalize into protein containing vesicles that subsequently fuse with the Golgi complex. Thus, the Golgi complex in these oocytes might serve as a center for packaging and concentrating the protein used in the construction of the protein containing pigment or protein-carbohydrate yolk bodies. The suggestion is made that the Golgi complex may also synthesize the carbohydrate portion of the formentioned yolk bodies. In an adnuclear position in young oocytes are some acid mucopolysaccharide containing vacuolar bodies. In mature eggs, these structures are found within the peripheral ooplasm and we have referred to them as cortical granules. There is no alteration of these cortical granules during sperm activation.  相似文献   

5.
Taste buds in foliate papillae of the rhesus monkey were examined by electron microscopy. Three distinct cell types were identified. Type I cells were narrow elongated cells containing an oval nucleus, bundles of intermediate filaments, several Golgi bodies, and characteristic apical membrane-bounded dense granules. These cells exhibited morphological variations: some had a moderately dense cytoplasm, perinuclear free ribosomes, and flattened sacs of rough endoplasmic reticulum; others had a more lucent cytoplasm, dilated irregular rough endoplasmic reticulum, lysosome-like dense bodies, and lipid droplets. Type II cells typically contained a spherical, pale nucleus, a prominent nucleolus, supranuclear and infranuclear Golgi bodies, mitochondria with tubular cristae, and one or two centrioles. This cell type, too, showed some variation in the relative amounts of ribosomes and smooth endoplasmic reticulum, which varied inversely with each other. Type III cells were characterized by a clear apical cytoplasm essentially devoid of ribosomes and containing microtubules. In a few type III cells, the peri- and infranuclear regions contained many ribosomes and some rough endoplasmic reticulum. In most Type III cells, there were large numbers of dense and clear vesicles in the peri- and infranuclear regions; some of the vesicles were grouped in synapse-like arrangements with adjacent nerves. The morphological variations exhibited by all three cell types could be accounted for by age differences in each of the cells. This would be consistent with the notion that cell renewal occurs in each of the three cell populations.  相似文献   

6.
Antibodies raised against purified glutelins and prolamines were employed as probes to study the cellular routes by which these proteins are deposited into protein bodies of rice (Oryza sativa L.) endosperm. Three morphologically distinct protein bodies, large spherical, small spherical, and irregularly-shaped, were observed, in agreement with existing reports. Immunocytochemical studies showed the presence of glutelins in the irregularly-shaped protein bodies while the prolamines were found in both the large and small spherical protein bodies. Both the large and small spherical protein bodies, distinguishable by electron density and gold-labeling patterns, appear to be formed by direct deposition of the newly formed proteins into the lumen of the rough endoplasmic reticulum (ER). In contrast, glutelin protein bodies are formed via the Golgi apparatus. Small electron-lucent vesicles are often found at one side of the Golgi. Electron-dense vesicles, whose contents are labeled by glutelin antibody-gold particles, are commonly observed at the distal side of the Golgi apparatus and fuse to form the irregularly shaped protein bodies in endosperm cells. These observations indicate that the transport of rice glutelins from their site of synthesis, the ER, to the site of deposition, the protein bodies, is mediated by the Golgi apparatus.Abbreviations BSA bovine serum albumin - Da dalton - DAF days after flowering - ER endoplasmic reticulum - GL irregularly shaped - L large spherical - S small spherical (protein bodies) - PBS phosphate-buffered saline - PTA phosphotungstic acid  相似文献   

7.
SYNOPSIS. Young organisms of Tokophrya infusionum starved for several hr, are best suited for a study of the fine structure of this organism including the distribution of its organelles. Acid phosphatase was localized by a combined electron microscopy and cytochemical approach using modified Gomori methods. The enzyme was found in small dense bodies, spheroid vesicles, missile-like bodies, rough-surfaced endoplasmic reticulum, residue and autophagic vacuoles. The small dense bodies are thought to be primary lysosomes since electron micrographs show a) a continuity between the membrane of the rough-surfaced endoplasmic reticulum and that of the dense bodies and b) a connection between the contents of both structures when the dense bodies form from the endoplasmic reticulum.  相似文献   

8.
Transmission and scanning electron microscopy of the lateral ventricles of the toad brain revealed the presence of supraependymal cells that have the features of macrophages. Based solely on their surface morphology three different cell forms could be identified. The most frequently observed cells are flat and multipolar, and have a smooth or ruffled surface. The second type is spherical with a ruffled surface and occurs either singly, in which case it lacks processes, or in clusters from which processes radiate. The third type has surface blebs and numerous thin, smooth processes. However, when specimens that had been examined in the scanning electron microscope are viewed in the transmission electron microscope, all cells appear to belong to a single cell type. All cells viewed closely resemble macrophages in that they contain nuclei with clumped chromaffin, single cisternae of rough endoplasmic reticulum, numerous dense bodies, and many Golgi complexes. In addition, when horseradish peroxidase (HRP) was perfused into the ventricles, reaction product was found a short time thereafter within cytoplasmic vacuoles, and after a longer period within dense bodies. Because of their ultrastructural resemblance to macrophages and their capacity to ingest HRP, we suggest that these cells function as phagocytes and, as such, act to remove foreign materials from the cerbrospinal fluid.  相似文献   

9.
Storage proteins of wheat grains (Triticum L. em Thell) are deposited in protein bodies inside vacuoles. However, the subcellular sites and mechanisms of their aggregation into protein bodies are not clear. In the present report, we provide evidence for two different types of protein bodies, low- and high-density types that accumulate concurrently and independently in developing wheat endosperm cells. Gliadins were present in both types of protein bodies, whereas the high molecular weight glutenins were localized mainly in the dense ones. Pulse-chase experiments verified that the dense protein bodies were not formed by a gradual increase in density but, presumably, by a distinct, quick process of storage protein aggregation. Subcellular fractionation and electron microscopy studies revealed that the wheat homolog of immunoglobulin heavy-chain-binding protein, an endoplasmic reticulum-resident protein, was present within the dense protein bodies, implying that these were formed by aggregation of storage proteins within the endoplasmic reticulum. The present results suggest that a large part of wheat storage proteins aggregate into protein bodies within the rough endoplasmic reticulum. Because these protein bodies are too large to enter the Golgi, they are likely to be transported directly to vacuoles. This route may operate in concert with the known Golgi-mediated transport to vacuoles in which the storage proteins apparently condense into protein bodies at a postendoplasmic reticulum location. Our results further suggest that although gliadins are transported by either one of these routes, the high molecular weight glutenins use only the Golgi bypass route.  相似文献   

10.
Fine structural observations on heat shocked cells of S. mytilus reveal that cell organelles undergo structural alterations. Mitochondria show distorted shapes with disorganized cristae and vacuolar spaces. Pulse heat shock results in dilated rough endoplasmic reticulum, abundant polysomes as well as smooth endoplasmic reticulum. Heat shocked cells show membrane bound bodies containing osmiophilic cores. In macronuclei, dense chromatin breaks up into discrete bodies accompanied by the appearance of bundles of fine filaments and clustering of nuclear pores. The most prominent changes are noticed in nucleoli. Within 15 min of heat shock, nucleoli show hypertrophy and fine fibrillar zone which gradually replaces the granular zone by 120 min giving the nucleoli ring shaped configuration. In S phase cells, macronuclei show the arrested replication band in which the diffused zone (the site of DNA replication) is absent.  相似文献   

11.
Summary During imbibition ofPhoenix dactylifera embryos, all cotyledon cells show the same changes: protein and lipid bodies degrade, smooth endoplasmic reticulum (ER) increases in amount, and dictyosomes appear. At germination, the distal portion of the cotyledon expands to form the haustorium. At this time, epithelial cells have a dense cytoplasm with many extremely small vacuoles. Many ribosomes are present along with ER, dictyosomes, and mitochondria. The parenchyma cells have large vacuoles and a small amount of peripheral cytoplasm. Between 2 and 6 weeks after germination, epithelial cells still retain the dense cytoplasm and many organelles appear: glyoxysomes, large lipid bodies, amyloplasts, large osmiophilic bodies, and abundant rough and smooth ER which appear to merge into the plasmalemma. A thin electron-transparent inner wall layer with many small internal projections is added to the cell walls. Starch grains appear first in the subsurface and internal parenchyma and subsequently in the epithelium. Lipid bodies, glyoxysomes, protein, and osmiophilic bodies occur in the epithelial and subepithelial cell layers but not in the internal parenchyma. At 8 weeks after germination, the cytoplasm becomes electron transparent, vacuolation occurs, lipid bodies and osmiophilic bodies degrade, and the endomembranes disassemble. After 10 weeks, the cells are empty. These data support the hypothesis that the major functions of the haustorium are absorption and storage.  相似文献   

12.
The ultrastructure and histochemistry of developing and mature cell inclusions in vegetative cells of Antithamnion defectum Kylin were examined. Those studied were chloroplast inclusions, cytoplasmic crystals and spherical bodies within the vacuole. Chloroplasts of mature vegetative cells contain an interthylakoidal, apparently noncrystalline deposit of undetermined chemical identity. The bodies are parallel to the long axis of the plastid, are square (0.13 μm) in cross-section, and up to 3 μm long. Spherical vacuolar bodies (0.5–1.5 μum diam) are formed during early stages of vacuole formation by accumulation of protein deposits in swelling endoplasmic reticulum (ER) cisternae. Swelling of smooth ER contiguous to the ER containing the deposits results in the vacuole enclosing the spherical bodies. In mature cells, vesicles appear to be secreted into the preformed vacuole. Cytoplasmic proteinaceous crystalloids develop without a bounding membrane and may serve as protein reserves.  相似文献   

13.
H. Lehmann  D. Schulz 《Planta》1969,85(4):313-325
Summary In meristematic cells of the gemma of Riella helicophylla and in young bud cells from the protonema of Funaria hygrometrica the cell plate is formed by fusion of small vesicles originating from the Golgi apparatus. These spherical vesicles of about 0.1 m diameter have an electron dense centre, probably consisting of pectic substances or their precursors. The endoplasmic reticulum producing multivesicular bodies participate in cell plate formation too. Another cytoplasmic component forming the cell plate are coated vesicles, the origin of which is the Golgi apparatus and perhaps also the endoplasmic reticulum. In view of these observations the question of whether the endoplasmic reticulum or the Golgi apparatus forms the cell plate must be answered in this way: both endoplasmic reticulum and Golgi apparatus supply material for growth of the cell plate. Multivesicular bodies, coated vesicles and other small vesicles of unknown nature participate in the formation of the primary wall.

Zum Teil finanziert mit Sondermitteln des Landes Niedersachsen an Prof. Dr. M. Bopp.  相似文献   

14.
In the annelid Enchytraeus albidus the ovary is composed of packets containing eight synchronously developing oocytes. Each oocyte in the packet is connected, via a bridge, to a common cytoplasmic mass. Developmental synchrony of oocytes within individual packets is probably related to the ooplasmic continuity. The young previtellogenic oocyte contains many polysomes, a few cisternae of smooth and rough endoplasmic reticulum, small Golgi complexes, and mitochondria. Many of the mitochondria are dumbbell-shaped and may thus represent division stages. Vitellogenesis is marked by the appearance of peripherally located lipid yolk and small, densely staining granules scattered throughout the ooplasm. There is an increase of smooth endoplasmic reticulum, mitochondria, and enlarged Golgi elements. Small multivesicular-like bodies, the early stages of developing yolk, are derived from the Golgi complex. The mature yolk sphere is bipartite and consists of (a) a variable number of dense spheres, the core bodies, which are produced in the ooplasm by the Golgi complex and which become embedded in (b) a dense matrix. The electron opaque tracer, horseradish peroxidase is incorporated into the oocyte and deposited in the matrix suggesting that this component of the yolk sphere is obtained by micropinocytosis. Enzyme digestions and various cytochemical techniques suggest that the core bodies are rich in carbohydrate, probably as glyco- or mucoproteins, and that the matrix is rich in lipid.  相似文献   

15.
To improve the current knowledge about the digestive system in opisthobranchs, light and electron microscopy methods were used to characterize the epithelial cells in the mid‐intestine of Aplysia depilans. This epithelium is mainly formed by columnar cells intermingled with two types of secretory cells, named mucous cells and granular cells. Columnar cells bear microvilli on their apical surface and most of them are ciliated. Mitochondria, multivesicular bodies, lysosomes and lipid droplets are the main components of the cytoplasm in the region above the nucleus of these cells. Peroxisomes are mainly found in middle and basal regions, usually close to mitochondria. Mucous cells are filled with large secretory vesicles containing thin electron‐dense filaments surrounded by electron‐lucent material in which acidic mucopolysaccharides were detected. The basal region includes the nucleus, several Golgi stacks and many dilated rough endoplasmic reticulum cisternae containing tubular structures. The granular cells are characterized by very high amounts of flat rough endoplasmic reticulum cisternae and electron‐dense spherical secretory granules containing glycoproteins. Enteroendocrine cells containing small electron‐dense granules are occasionally present in the basal region of the epithelium. Intraepithelial nerve fibres are abundant and seem to establish contacts with secretory and enteroendocrine cells.  相似文献   

16.
In the course of light and electron microscopic studies of 142 surgically-removed human pituitary adenomas, 28 tumors were found containing fibrous bodies composed of type II microfilaments with an average width of 115A. These spherical structures, measuring up to 4-5 micrometer occur exclusively in sparsely granulated growth hormone cells and acidophil stem cells, but as revealed by the immunoperoxidase technique, contain no growth hormone. Fibrous bodies are located in the Golgi region and are consistently associated with Golgi membranes and smooth-surfaced endoplasmic reticulum. Their association with centrioles is thought to be anatomical rather than functional. Several adenoma cells possess spherical formations composed entirely of smooth-walled membranes or transitional forms between smooth tubules and type II microfilaments, suggesting that smooth membranes may play a key role in the production of fibrillar substance. Fibrous bodies appear to be reliable morphologic markers and are valuable in the differential diagnosis of pituitary adenomas.  相似文献   

17.
Morphometric analysis of the superficial pineal gland of intact and blinded golden hamsters was conducted at both the light and electron microscopic level. The volume of the superficial gland was estimated to be 151 X 10(6) micron 3, comprising 90-94% of the total pineal parenchymal tissue. Analysis of structural rhythms in animals maintained under a 14:10 L:D cycle showed significant 24-hr variations in values for pinealocyte nuclei, nucleoli, rough and smooth endoplasmic reticulum, Golgi bodies, dense bodies, and dense-cored vesicles. Peak values for these structures generally occurred at the light:dark interface. These results provide morphological correlates for known rhythmic variations in the synthesis of pineal-gland products. Superficial pineals examined 8 weeks following optic enucleation exhibited a decrease in the volume of pinealocyte nuclei and cytoplasm, while nucleolar size and the amounts of smooth and rough endoplasmic reticulum, Golgi bodies, dense bodies and dense-cored vesicles were enhanced. The latter changes are interpreted as indications of increased synthetic activity by the superficial pineal gland in response to light deprivation.  相似文献   

18.
FINE STRUCTURE OF SMOOTH MUSCLE CELLS GROWN IN TISSUE CULTURE   总被引:7,自引:6,他引:1       下载免费PDF全文
The fine structure of smooth muscle cells of the embryo chicken gizzard cultured in monolayer was studied by phase-contrast optics and electron microscopy. The smooth muscle cells were irregular in shape, but tended to be elongate. The nucleus usually contained prominent nucleoli and was large in relation to the cell body. When fixed with glutaraldehyde, three different types of filaments were noted in the cytoplasm: thick (150–250 A in diameter) and thin (30–80 A in diameter) myofilaments, many of which were arranged in small bundles throughout the cytoplasm and which were usually associated with dark bodies; and filaments with a diameter of 80–110 A which were randomly orientated and are not regarded as myofilaments. Some of the aggregated ribosomes were helically arranged. Mitochondria, Golgi apparatus, and dilated rough endoplasmic reticulum were prominent. In contrast to in vivo muscle cells, micropinocytotic vesicles along the cell membrane were rare and dense areas were usually confined to cell membrane infoldings. These cells are compared to in vivo embryonic smooth muscle and adult muscle after treatment with estrogen. Monolayers of cultured smooth muscle will be of particular value in relating ultrastructural features to functional observations on the same cells.  相似文献   

19.
M Djaldetti  J Perek  I Zahavi 《Blut》1983,47(1):13-19
A patient with acute lymphoblastic leukemia (ALL) with cells containing two types of cytoplasmic inclusions is described. The inclusions appeared as globular bodies containing electron dense material with homogeneous structure and as crystalloid formations confined in organelles with structure similar to that of the surrounding mitochondria. In distinction to other reports, these structures were not related to the endoplasmic reticulum. The possibility that some of them represented altered mitochondria is discussed.  相似文献   

20.
Summary The thyroid gland of adult salamanders, Hynobius nebulosus, in the breeding season was studied by electron microscopy. The follicular cells are different in cell height and fine structures; the taller cells with many cell organelles and granules and the lower cells with a few cell organelles and granules are both present in the same follicle. In the cytoplasm, three types of membrane-bounded granules, namely, cytosomes, colloid droplets, and vacuolar bodies and circular membrane complexes occur. The vacuolar bodies are subdivided into two types; the ordinary type having loosely distributed particles and the specific type containing tubules and/or closely packed filaments, crystalloid structures, except for the particles. The chromophobe colloids within the Bensley-cells correspond to extremely large, ordinary type vacuolar bodies, while the Langendorff-colloid cells possess increased numbers of granular cisternae of endoplasmic reticulum and a ribosome-rich, dense cytoplasmic matrix but not extremely large colloid. The intracytoplasmic circular membrane complexes appear in the Golgi area of cytosome-rich cells. It is suggested that they originate from the Golgi apparatus which was activated to produce many cytosomes. Intranuclear inclusions consisting of microtubules and filaments and tight junctions between two adjacent lateral plasma membranes are occasionally encountered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号