首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of 4 or 8 drought cycles on four grass species,Cenchrus pennisetiformis, Leptochloa fusca, Panicum turgidum, andPennisetum divisum were assessed in a pot experiment. There were significant differences between the species in biomass production under water stress.C. pennisetiformis andP. turgidum produced significantly greater fresh and dry matter thanP. divisum and especially thanL. fusca. L. fusca had the lowest andP. divisum highest osmotic potentials compared with the other species after the completion of 4 or 8 drought cycles. Osmotic adjustment (difference between osmotic potential of droughted/rehydrated plants and control plants) was highest inL. fusca. The stomatal conductance was significantly decreased with increased drought stress inC. pennisetiformis. The elasticity ofC. pennisetiformis, P. turgidum andP. divisum increased with increase in number of drought cycles, whereas that ofL. fusca remained unchanged.L. fusca andP. turgidum had the lowest leaf hydration of all species after 8 drought cycles. The chlorophyllsa andb in all species remained unaffected by drought treatments. The proline content ofC. pennisetiformis andL. fusca increased significantly with increased drought stress, whereas that ofP. turgidum remained unaffected after 4 or 8 drought cycles.L. fusca synthesized great amount of leaf soluble proteins during 8 drought cycles, whereasP. divisum had low protein content after 4 drought cycles. The protein contents ofC. pennisetiformis andP. turgidum remained unaffected after 8 drought cycles. The leaf epicuticular wax ofL. fusca increased consistently with increased drought stress, but leaf wax ofP. divisum increased only at the highest drought stress and that ofC. pennisetiformis andP. turgidum increased after 4 drought cycles. On the basis of these results it was established thatC. pennisetiformis andP. turgidum were the most tolerant,P. divisum intermediate, andL. fusca the most sensitive to drought stress. The osmotic adjustment did not positively correlate with the degree of drought resistance.  相似文献   

2.
Summary Efect of sowing density on germination, establishment and growth of two perennial weeds,Eupatorium adenophorum spreng. andE. riparium Regel, was studied by sowing varying number of seeds of each species in pots. At high sowing density, seedling emergence did not proportionately increase with seed input. The yield and seed output per unit area was independent of sowing density. Survival of established plants was independent of soil moisture stress. The dry matter yield of both species declined at low moisture regime, the reduction being more inE. riparium. E. adenophorum produced more seeds at low moisture level, whileE. riparium at high moisture level. The resource allocation to roots was reduced due to moisture stress, especially inE. andenophorum.  相似文献   

3.
Three Eucalyptus species indigenous to Australia and successfully acclimatised in the subtropical and northern desert regions of Israel have been grown in pots. Two of them, which contained loess-like desert soil, and one, which contained sandy soil, out of doors, have been exposed to extreme semi-arid climatic conditions with only soil moisture under control. In each species one group has been kept at 15.5% and a second at 7% moisture. The groups grown in water deficient soil had a 31.0–42.8% smaller leaf area and a 2–4 fold lower transpiration rate, the values varying with species. When soil moisture was raised to the same level for the water deficient groups and the plants grown at field capacity an equal or a higher transpiration rate was obtained. This happened although both groups had been exposed to the same intensity of solar radiation and in spite of the significantly smaller leaf area in the groups grown in water deficient soil. In woody xerophytes grown in water deficient soil under arid conditions, the quantity of available soil moisture and the inherent biological properties of the species decide the rate of transpiration and not the area of the foliage or the intensity of solar radiation, or physical evaporation.  相似文献   

4.
Seasonal drought may have a high impact on the karst ecosystem. The transpiration from Cyclobalanopsis glauca (syn. Quercus glauca) stand on a rocky hilly slope in South China was measured during the dry period of 2006 by using the Granier’s sap-flow method. During the experimental period, maximum sap flux density (J s) ranged from 20 to 40 g H2O m−2 s−1 according to diameter of breast height (DBH) of individual trees. On sunny days, daily transpiration varied between 3.4 and 1.8 mm day−1. Transpiration of C. glauca was closely correlated to the radiation, air temperature, and vapor pressure deficit (VPD). Soil moisture was a very important factor influencing transpiration. The very low soil water content might result in low stand transpiration even when VPD is high, but high soil water content might also result in low transpiration if it was low VPD. However, VPD rather than soil moisture, affected largely the stand transpiration under high soil water content. The amount of transpiration was much more than that of the total soil moisture loss during the continuous sunny days, indicating that the dry shallow soils were probably not the only source for root-uptake water. C. glauca grows deep roots through the rock fissures of epikarst, indicating that epikarst might be another main source for sustaining transpiration in response to dry demand in autumn. Therefore, a large amount of deep roots of karst species would be a very important hydraulic connecting from the epikarst to above ground by transpiration, which would promote the biogeochemical process in a karst system.  相似文献   

5.
BLUM  A.; SULLIVAN  C. Y. 《Annals of botany》1986,57(6):835-846
It may be that land-races of sorghum (Sorghum sp.) and millet[Pennisetum americanum (L.) Leeke] which evolved along geographicalgradients of rainfall in Africa and India, differ in their droughtresistance. Any physiological attributes found to be correlatedwith low rainfall might be important and effective characteristicsfor crop production in dry regions. Twenty land-races were chosen which evolved along geographicalgradients of rainfall, seven millets from India, six sorghumsfrom Mali, and seven sorghums from the Sudan. Races were evaluatedfor their growth potential and plant water relations under hydroponicsconditions in a growth chamber. A water stress treatment wasimposed by adding polyethylene glycol-8000 to the nutrient solution,giving a solute water potential of -0.5 MPa, compared with acontrol solution at 003 MPa. Drought resistance, in terms of relatively less growth inhibitionunder stress, was higher in races from dry regions than in racesfrom humid regions. Of all the physiological variables measured[carbon exchange rate, (CER), transpiration, transpiration ratio(CER/transpiration), leaf diffusive resistance, leaf water potentialand osmotic adjustment], only osmotic adjustment under stresswas generally correlated with average rainfall at each race'sorigin, indicating greater osmotic adjustment in land-racesfrom drier regions. Races with a greater capacity for osmoticadjustment were characterized by smaller plants with high ratesof transpiration and low rates of leaf senescence under stress. The carbon exchange rate per unit leaf area increased as liveleaf area decreased under stress due to leaf senescence. Thus,drought resistant races under stress tended to have lower CERper unit live leaf area (but not per plant) than susceptibleraces. Transpiration ratios under stress were lower in resistantthan in susceptible races, mainly because resistant races hadhigher transpiration. The results for the measured variables showed a general trendfor greater drought resistance in sorghum than in millet, indicatingthat the commonly observed adapation of the millets to dry environmentsmay be due to other factors, such as drought escape or heattolerance. Sorghum sp. Pennisetum americanum L. (Leeke), water stress, osmotic adjustment, photosynthesis, transpiration, evolution, drought resistance  相似文献   

6.
The authors give measurements of osmotic values in 35 Cuban plant species, using the cryoscopic method. Osmotic values of plants correspond relatively well with environmental conditions, but in different species of the same habitat they may be different. The lowest values were found inCactaceae (?1.6 to ?6.2 atm.) and in epiphyticBromeliaceae (?4.6 to ?4.7 atm.), the highest in halophytes: ?21 to ?56 atm.  相似文献   

7.
荒漠绿洲过渡带一年生草本植物对干旱胁迫的响应   总被引:2,自引:0,他引:2  
席璐璐  缑倩倩  王国华  宋冰 《生态学报》2021,41(13):5425-5434
选取河西走廊荒漠绿洲过渡带典型一年生草本植物雾冰藜(Bassia dasyphylla)、虎尾草(Chloris virgata)和狗尾草(Setaria viridis)为研究对象,设置5个水分梯度(正常水分(CK),轻度干旱(5d)、中度干旱(10d)、重度干旱(15d),重度干旱(15d)复水),分析了3种一年生草本植物生理和形态等性状对干旱胁迫的响应。结果表明:一年生草本植物可以通过生理反应(渗透调节)适应轻度和中度干旱胁迫,而通过个体形态来适应重度干旱胁迫。在轻度和中度干旱处理下,一年生草本植物通过调控叶片渗透调节物质脯氨酸、可溶性蛋白和可溶性糖维持叶片渗透压,提高保水能力,叶绿素含量增加,使丙二醛含量维持在较低的水平,同时,根系活力增强,有效促进了根系水分吸收;而在重度胁迫下,渗透调节物质作用降低,丙二醛含量迅速增加,导致可溶性蛋白含量下降,叶绿素分解加速,植物生长受到抑制,在有限的生物量下,一年生草本植物主要通过根系伸长、根长与茎长的比增加和减小茎长来适应重度干旱胁迫,最终导致了种子百粒重和结种数量下降。  相似文献   

8.
Brassica juncea (drought susceptible) and B. campestris (drought tolerant) were germinated under simulated water stress created by polyethylene glycol (MW 6000). The two species showed characteristic differences in dry weight, nitrate reductase, aspartate amino transferase, alanine aminotransferase, glutamate dehydrogenase and free proline accumulation in the embryo axis under water stress. Stress resulted in the decreased activities of these enzymes and the decrease was more in B. juncea than in B. campestris. In both species, protein content was higher under stress. In B. juncea, a 12-fold increase in free proline occurred as compared to a 7-fold increase in B. campestris at ?6 atm osmotic potential.  相似文献   

9.
Leaf water storage capacity and osmotic strength are important traits enabling species to adapt to environments that are often moisture limited. However, whether these drought tolerance traits are correlated with the species diversification rate (DR) of plant lineages is yet to be determined. In this study, we selected a species-rich genus (Primulina) of plants widely distributed in karst regions in which species frequently experience variable periods of drought. We measured water storage capacity-related traits (including leaf thickness and water content per mass) and saturated osmotic strength in the leaves of 58 Primulina species growing in a common garden. Subsequently, using phylogenetic methods, we examined the relationships between the rate of species diversification and the drought tolerance traits and between the species DR and evolutionary rates of these traits. We found that neither water storage capacity nor saturated osmotic strength showed significant relationships with the rate of species diversification. However, the evolutionary rate of saturated osmotic strength showed a significant correlation with the species DR, although no comparable significant relationship was detected regarding the evolutionary rate of water storage capacity. Our study indicates that the diversification among Primulina species has typically been accompanied by an extensive divergence of leaf osmotic strength but not a divergence in leaf water storage capacity. These findings will enhance our current understanding of how drought tolerance influences the diversification of plant species in karst regions.  相似文献   

10.
Summary Mechanisms of dry-season drought resistance were evaluated for five evergreen shrubs (Psychotria, Rubiaceae) which occur syntopically in tropical moist forest in central Panama. Rooting depths, leaf conductance, tissue osmotic potentials and elasticity, and the timing of leaf production were evaluated. From wet to dry season, tissue osmotic potentials declined and moduli of elasticity increased in four and five species, respectively. Irrigation only affected osmotic adjustment by P. furcata. The other seasonal changes in leaf tissue properties represented ontogenetic change. Nevertheless, they made an important contribution to dry-season turgor maintenance. Small between-year differences in dry season rainfall had large effects on plant water status. In 1986, 51 mm of rain fell between 1 January and 31 March, and pre-dawn turgor potentials averaged <0.1 MPa for all five Psychotria species in March (Wright 1991). In 1989, 111 mm of rain fell in the same period, pre-dawn turgor potentials averaged from 0.75 to 1.0 MPa for three of the species in April, and only P. chagrensis lost turgor. The relation between leaf production and drought differed among species. P. limonensis was buffered against drought by the lowest dry-season conductances and the deepest roots (averaging 244% deeper than its congeners) and was the only species to produce large numbers of leaves in the dry season. P. chagrensis was most susceptible to drought, and leaf production ceased as turgor loss developed. For the other species, water stress during severe dry seasons may select against dry-season leaf production.  相似文献   

11.
This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO2 assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.  相似文献   

12.
Ripley BS  Pammenter NW 《Oecologia》2004,139(4):535-544
Water status in relation to standing biomass and leaf area indices (LAI) of the subtropical foredune species Arctotheca populifolia, Ipomoea pes-caprae and Scaevola plumieri were studied in the Eastern Cape, South Africa. The plants showed little evidence of water stress, never developing leaf water potentials more negative than –1.55 MPa, a value which is typical of mesophytes rather than xerophytes. The plants showed no seasonal changes in osmotic potential, an indication that they did not need to osmoregulate, nor were there significant alterations in tissue elasticity. Turgor potential for the most part remained positive throughout the day or recovered positive values at night, a condition suitable for the maintenance of growth that may be essential to cope with sand accretion. All three species show relatively high transpiration rates and only I. pes-caprae showed any evidence of strong limitations of transpiration rate through reductions in midday stomatal conductance. All three species had relatively high instantaneous water use efficiencies as a result of high assimilation rates rather than low transpiration rates. Simple water budgets, accounting for losses by transpiration and inputs from rainfall, suggest that the water stored in the dune sands is sufficient to meet the requirements of the plants, although water budgets calculated for I. pes-caprae suggest that this species may on occasion be water limited. The results suggest that it is the low biomass and LAI that lead to these favourable water relations.  相似文献   

13.
A field study was conducted to evaluate the drought tolerance of three sorghum [Sorghum bicolor (L.) Moench] cultivars, Gadambalia, Arous elRimal and Tabat, and quantify the physiological bases for differences in their drought tolerance. Water stress reduced shoot dry mass of Gadambalia, Arous elRimal and Tabat by 43, 46 and 58 %, respectively. The respective reduction in leaf area of the three cultivars was 28, 54 and 63 %. The reduction in net photosynthetic rate, stomatal conductance and transpiration rate due to water stress was lowest in Gadambalia and highest in Tabat. The leaf water potentials and relative water contents of Gadambalia under wet and dry treatments were similar, while those of Tabat were significantly reduced by water stress. The lowest and highest liquid water flow conductance was displayed by Tabat and Gadambalia, respectively. Drought tolerance in Gadambalia is associated with its smaller leaf area, higher liquid water flow conductance, and ability to maintain high leaf water potential, relative water content, stomatal conductance, transpiration rate and photosynthetic rate under drought stress. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Seven different hosts,Panicum maximum, Chrysopogon fulvis, Themeda triandra, Chloris gayana, Brachiaria brizantha, Paspalum scrobiculatum andEleusine coracana were screened in order to select a better host for mass multiplication ofGlomus fasciculatum inoculum. Of these,Chloris gayana (Rhodes grass) was found to be the best host on the basis of root colonization and spore production and of the infective propagules of the potball.  相似文献   

15.
Effects of soil drought on growth and productivity of 16 single cross maize hybrids were investigated under field and greenhouse experiments. The Drought Susceptibility Index (DSI) was evaluated in a three year field experiment by the determination of grain loss in conditions of two soil moisture levels (drought and irrigated) and in a pot experiment by the effects of periodical soil drought on seedling dry matter. In the greenhouse experiment response to drought in maize genotypes was also evaluated by root to shoot dry mater ratio, transpiration productivity index, indexes of kernel germination and index of leaf injury by drought and heat temperature. The obtained values of DSI enabled the ranking of the tested genotypes with respect to their drought tolerance. The values of DSI obtained in the field experiment allow to divide the examined genotypes into three, and in the greenhouse experiment into two groups of drought susceptibility. The correlation coefficients between the DSI of maize hybrids in the field and the greenhouse experiments was high and statistically significant, being equal to 0.876. The ranking of hybrids drought tolerance, identified on the basis of field experiments was generally in agreement with the ranking established on the basis of the greenhouse experiment. In the greenhouse experiment statistically significant coefficients of correlation with DSI values in hybrids were obtained for the ratio of dry matter of overground parts to dry matter of roots, both for control and drought treatments, whereas in the estimation of the transpiration productivity coefficient and total dry matter the correlation coefficients were not statistically significant. In this study several laboratory tests were carried out for the drought tolerance of plants (kernel germination, leaf injury) on 4 drought resistant and 4 drought sensitive maize hybrids. Statistically significant correlation coefficients between DSI and the examined parameter of grain germination and leaf injury were obtained for the determination of promptness index (PI), seedling survival index (SS) and leaf injuries indexes (IDS, ITS) as a result of exposure to 14 days of soil drought, osmotic drought −0.9 MPa and exposure to high temperature 45 ° or 50 °C. The results of laboratory tests show that in maize the genetic variation in the degree of drought tolerance is better manifested under severe conditions of water deficit in the soil.  相似文献   

16.
Summary Two subspecies ofHypochaeris radicata were compared with respect to differences in drought tolerance. The soil water content of the sites ofH. radicata ssp. ericetorum Van Soest was always lower than that ofH. radicata L. ssp.radicata throughout a great part of the growing season. Two water culture experiments were conducted at different light intensities. Water stress was induced by addition of NaCl to the culture solution. Both subspecies accumulated free proline andmyo-inositol during water stress. The results are compared with those of field observations. In all experiments with stress application ssp.radicata showed heavier wilting symptoms than ssp.ericetorum, concomittantly with a lower osmotic potential of the cell sap, a higher percentage of dry-weight and irreversible desiccation of older leaves in some experiments after stress application. The observed effects are attributed to the higher transpiration rate maintained by ssp.radicata during stress. Free proline accumulation depended on the severity of the internal stress rather than on the applied level of external stress. At low light intensity the stress resulted in a significantly higher proline accumulation in ssp.ericetorum than in ssp.radicata whereas at high light intensity this was the reverse. No differences inmyo-inositol accumulation were observed in the water culture experiments. Since ssp.ericetorum occurs in a nitrogen poor environment, the effect of nitrogen deprivation on accumulation of free proline andmyo-inositol was investigated. Both subspecies tended to accumulate less proline under such conditions especially ssp.radicata. Accumulation ofmyo-inositol was not favoured by nitrogen deprivation in the water culture experiments. Neither of the subspecies accumulated proline during the sampling period in the field presumably as a result of the wet summer. Leaves of whole plants collected in the field and subsequently subjected to water deprivation showed a high capacity to accumulate free proline. The level ofmyo-inositol in the field was higher in ssp.ericetorum than in either ssp.radicata or control plants in the water culture experiments. When the cytoplasmic volume is estimated as 10% of the total cell volume, free proline andmyo-inositol account for 44–69% of the osmotic potential. It is concluded that ssp.ericetorum is better adapted to the drier environment by its higher capacity to accumulate proline and reduce transpiration during stress. Grassland species research group, publication no41.  相似文献   

17.
In this study we tested whether rhizosphere microorganisms can increase drought tolerance to plants growing under water-limitation conditions. Three indigenous bacterial strains isolated from droughted soil and identified as Pseudomonas putida, Pseudomonas sp., and Bacillus megaterium were able to stimulate plant growth under dry conditions. When the bacteria were grown in axenic culture at increasing osmotic stress caused by polyethylene glycol (PEG) levels (from 0 to 60%) they showed osmotic tolerance and only Pseudomonas sp. decreased indol acetic acid (IAA) production concomitantly with an increase of osmotic stress (PEG) in the medium. P. putida and B. megaterium exhibited the highest osmotic tolerance and both strains also showed increased proline content, involved in osmotic cellular adaptation, as much as increased osmotic stress caused by NaCl supply. These bacteria seem to have developed mechanisms to cope with drought stress. The increase in IAA production by P. putida and B. megaterium at a PEG concentration of 60% is an indication of bacterial resistance to drought. Their inoculation increased shoot and root biomass and water content under drought conditions. Bacterial IAA production under stressed conditions may explain their effectiveness in promoting plant growth and shoot water content increasing plant drought tolerance. B. megaterium was the most efficient bacteria under drought (in successive harvests) either applied alone or associated with the autochthonous arbuscular mycorrhizal fungi Glomus coronatum, Glomus constrictum or Glomus claroideum. B. megaterium colonized the rhizosphere and endorhizosphere zone. We can say, therefore, that microbial activities of adapted strains represent a positive effect on plant development under drought conditions.  相似文献   

18.
The conservation of water in agriculture requires an understanding of the mechanisms of plant–water relations. This study aimed to reveal hydraulic regulation strategies of maize (Zea mays L.) for maintaining the plant water balance during drought. The water relations of two maize inbred lines (Tian4 and 478) that differ in their resistance to drought in the field were investigated under well-watered conditions and osmotic stress induced with 10 % PEG 6000. The leaf transpiration rate and leaf water potential of 478 varied diurnally, but remained constant in Tian4, which is more drought resistant. Tian4 plants showed morphological, anatomical and physiological advantages that protected them from foliar water loss. The strategies of leaf hydraulics to regulate leaf water balance during the day and during short-term osmotic stress also differed between Tian4 and 478. The leaf hydraulic conductivity of Tian4 and 478 increased temporarily, but their root hydraulic conductivities were reduced under osmotic stress. However, the root hydraulic conductivity of Tian4 subsequently recovered. Lower and rapidly reduced leaf transpiration and the ability of root hydraulics to recover from short-term osmotic stress can help explain the strategies for plant water balance of drought-tolerant maize.  相似文献   

19.
Grass pea (Lathyrus sativus L.) is a legume crop known from its tolerance to various abiotic stresses, especially drought. In this study, we investigated: (1) the response of grass pea seedlings to osmotic stress generated in vitro by polyethylene glycol (PEG); (2) potential drought acclimatization mechanisms of two polish grass pea cultivars. Grass pea seeds of two cultivars were sown on media containing different PEG concentrations (0, 5.5, 11.0 mM) and cultivated for 14 days in controlled conditions. Plants’ dry matter increased under osmotic stress (regardless of PEG concentration). In turn, the highest dose of PEG caused a reduction in seedling growth in both cultivars. Furthermore, PEG caused the peroxidase activity increase in whole seedlings and catalase (CAT) activity in roots. However, differences between cultivars were noted in: CAT activity in shoots; while phenols and anthocyanin content as well as electrolyte leakage in shoots and roots. In turn, in both tested genotypes, accumulation of proline increased in shoots under osmotic stress. Obtained results indicate that the examined plants, although belonging to the same species, differ in acclimatization processes leading to elevated tolerance to osmotic stress.  相似文献   

20.
Seedling Traits Determine Drought Tolerance of Tropical Tree Species   总被引:3,自引:0,他引:3  
Water availability is the most important factor determining tree species distribution in the tropics, but the underlying mechanisms are still not clear. In this study, we compared functional traits of 38 tropical tree species from dry and moist forest, and quantified their ability to survive drought in a dry‐down experiment in which wilting and survival were monitored. We evaluated how seedling traits affect drought survival, and how drought survival determines species distribution along the rainfall gradient. Dry forest species tended to have compound leaves, high stem dry matter content (stem dry mass/fresh mass), and low leaf area ratio, suggesting that reduction of transpiration and avoidance of xylem cavitation are important for their success. Three functional groups were identified based on the seedling traits: (1) drought avoiders with a deciduous leaf habitat and taproots; (2) drought resisters with tough tissues (i.e., a high dry matter content); and (3) light‐demanding moist forest species with a large belowground foraging capacity. Dry forest species had a longer drought survival time (62 d) than moist forest species (25 d). Deciduousness explained 69 percent of interspecific variation in drought survival. Among evergreen species, stem density explained 20 percent of the drought survival. Drought survival was not related to species distribution along the rainfall gradient, because it was mainly determined by deciduousness, and species with deciduous seedlings are found in both dry and moist forests. Among evergreen species, drought survival explained 28 percent of the variation in species position along the rainfall gradient. This suggests that, apart from drought tolerance, other factors such as history, dispersal limitation, shade tolerance, and fire shape species distribution patterns along the rainfall gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号