首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Initiation by the yeast viral transcriptase in vitro   总被引:4,自引:0,他引:4  
  相似文献   

4.
5.
6.
7.
8.
9.
10.
Positive strand viral replicases are membrane-bound complexes of viral and host proteins. The mechanism of viral replication and the role of host proteins are not well understood. To understand this mechanism, a viral replicase assay that utilizes extracts from dengue virus-infected mosquito (C6/36) cells and exogenous viral RNA templates is reported in this study. The 5'- and 3'-terminal regions (TR) of the template RNAs contain the conserved elements including the complementary (cyclization) motifs and stem-loop structures. RNA synthesis in vitro requires both 5'- and 3'-TR present in the same template molecule or when the 5'-TR RNA was added in trans to the 3'-untranslated region (UTR) RNA. However, the 3'-UTR RNA alone is not active. RNA synthesis occurs by elongation of the 3'-end of the template RNA to yield predominantly a double-stranded hairpin-like RNA product, twice the size of the template RNA. These results suggest that an interaction between 5'- and 3'-TR of the viral RNA that modulates the 3'-UTR RNA structure is required for RNA synthesis by the viral replicase. The complementary cyclization motifs of the viral genome also seem to play an important role in this interaction.  相似文献   

11.
For positive-strand RNA viruses, the viral genomic RNA also acts as an mRNA directing the translation of the replicase proteins of the virus. Replication takes place in association with cytoplasmic membranes, which are heavily modified to create specific replication compartments. Here we have expressed by plasmid DNA transfection the large replicase polyprotein of Semliki Forest virus (SFV) in mammalian cells from a nonreplicating mRNA and provided a separate RNA containing the replication signals. The replicase proteins were able to efficiently and specifically replicate the template in trans, leading to accumulation of RNA and marker gene products expressed from the template RNA. The replicase proteins and double-stranded RNA replication intermediates localized to structures similar to those seen in SFV-infected cells. Using correlative light electron microscopy (CLEM) with fluorescent marker proteins to relocate those transfected cells, in which active replication was ongoing, abundant membrane modifications, representing the replication complex spherules, were observed both at the plasma membrane and in intracellular endolysosomes. Thus, replication complexes are faithfully assembled and localized in the trans-replication system. We demonstrated, using CLEM, that the replication proteins alone or a polymerase-negative polyprotein mutant together with the template did not give rise to spherule formation. Thus, the trans-replication system is suitable for cell biological dissection and examination in a mammalian cell environment, and similar systems may be possible for other positive-strand RNA viruses.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
Recognition of RNA templates by viral replicase proteins is one of the key steps in the replication process of all RNA viruses. However, the mechanisms underlying this phenomenon, including primary RNA elements that are recognized by the viral replicase proteins, are not well understood. Here, we used aptamer pulldown assays with membrane fractionation and protein-RNA coimmunoprecipitation in a cell-free viral translation/replication system to investigate how viral replicase proteins recognize the bipartite genomic RNAs of the Red clover necrotic mosaic virus (RCNMV). RCNMV replicase proteins bound specifically to a Y-shaped RNA element (YRE) located in the 3' untranslated region (UTR) of RNA2, which also interacted with the 480-kDa replicase complexes that contain viral and host proteins. The replicase-YRE interaction recruited RNA2 to the membrane fraction. Conversely, RNA1 fragments failed to interact with the replicase proteins supplied in trans. The results of protein-RNA coimmunoprecipitation assays suggest that RNA1 interacts with the replicase proteins coupled with their translation. Thus, the initial template recognition mechanisms employed by the replicase differ between RCNMV bipartite genomic RNAs and RNA elements are primary determinants of the differential replication mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号