首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The active sites of carbonic anhydrases I contain a unique histidine residue at sequence position 200. To test the hypothesis that His200 is essential for the isoenzyme-specific catalytic and inhibitor-binding properties of carbonic anhydrases I, a variant of human carbonic anhydrase II, having His200 for Thr200, was prepared by oligonucleotide-directed mutagenesis. The variant has a circular dichroic spectrum that is indistinguishable from that of the parent enzyme. The kinetics of CO2 hydration and HCO3- dehydration has been investigated. The results show that the amino acid substitution has led to changes of catalytic parameters as well as Ki values for anion inhibition in the expected directions towards the values for isoenzyme I. However, the maximal 4-nitrophenyl acetate hydrolase activity of the variant is higher than for any naturally occurring carbonic anhydrase studied so far. A detailed analysis of the kinetic observations suggests that the modification has resulted in a change of the step that limits the maximal rate of CO2 hydration at saturating buffer concentrations. This rate-limiting step is an intramolecular proton transfer in unmodified isoenzyme II and, presumably, HCO3- dissociation in the variant and in human isoenzyme I. A free-energy profile for the dominating pathway of CO2 hydration at high pH was constructed. The results suggest that the major effect of His200 is a stabilization of the enzyme-HCO3- complex by about 7.5 kJ/mol (variant) and 6.1 kJ/mol (human isoenzyme I) relative to unmodified isoenzyme II, while proton transfer between the metal site and the reaction medium is only marginally affected by the amino acid replacement.  相似文献   

2.
Site-specific mutagenesis has been used to replace amino acid residues in the active site of human carbonic anhydrase II with residues characterizing carbonic anhydrases I. Previous studies of [Thr200----His]isoenzyme II [Behravan, G., Jonsson, B.-H. & Lindskog, S. (1990) Eur. J. Biochem. 190, 351-357] showed that His200 is important for the specific catalytic properties of isoenzymes I. In this paper some properties of two single mutants, Asn62----Val and Asn67----His, as well as a double mutant, Asn67----His/Thr200----His, are described. The results show that neither Val62 nor His67 give rise to isoenzyme-I-like properties, while the double mutant behaves like the single mutant with His200. At pH 8.9, the variant with Val62 has a higher value of kcat/Km for CO2 hydration than unmodified isoenzyme II, whereas the variant with His67 has an enhanced kcat value. The replacement of Asn62 with Val results in a 20% increase of the 4-nitrophenyl acetate hydrolase activity. For the double mutant, the esterase activity is quite close to that calculated on the assumption that the effects of the two single mutations on the free energy of activation are additive.  相似文献   

3.
Four amino acid residues, His64, Asn67, Leu198 and Val207, in the active site of human carbonic anhydrase II, have been replaced by Lys64, Arg67, Phe198 and Ile207, which are characteristic for the muscle-specific, low-activity isoenzyme form, carbonic anhydrase III. The aim of the investigation has been to test if any of these residues, or a combination of them, is important for the low CO2 hydration activity, low esterase activity, low pKa for the pH/rate profile and low affinity for sulfonamide inhibitors characterizing carbonic anhydrases III. However, no evidence for such critical roles was found. A combination of Lys64 and Arg67 appears to result in a decrease in CO2 hydration activity, but even the quadruple mutant having all four changes is only eight times less active (kcat/Km) than unmodified isoenzyme II, in contrast to isoenzyme III which is nearly 300 times less active than isoenzyme II. The 4-nitrophenyl acetate hydrolase activity of the quadruple mutant is sevenfold lower than that of unmodified isoenzyme II, while the active site of isoenzyme III hardly catalyzes the hydrolysis of this ester at all. The pKa controlling the esterase activity of the quadruple mutant is 6.2, which should be compared to a value of 6.8 for unmodified isoenzyme II, and about 5 for isoenzyme III. While isoenzyme III binds sulfonamide inhibitors 10(3)-10(4) times less strongly than isoenzyme II, only [Asn-67----Arg]isoenzyme II shows a weaker binding of the investigated sulfonamide, dansylamide, but only by a factor of two. Some of the other mutants show enhanced affinities, up to nearly fourfold for the double mutant with Phe198 and Ile207. It is speculated that additional differences between the active sites of isoenzyme II and III might be important for the precise orientations and interactions of the side chains of isoenzyme-III-specific amino acid residues.  相似文献   

4.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

5.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

6.
To test the hypothesis that histidine 64 in carbonic anhydrase II has a crucial role as a 'proton shuttle group' during catalysis of CO2-HCO3- interconversion, this residue was replaced by lysine, glutamine, glutamic acid and alanine by site-directed mutagenesis. All these variants turned out to have high CO2 hydration activities. The kcat values at pH 8.8 and 25 degrees C were only reduced by 1.5-3.5-fold compared to the unmodified enzyme. These results show that intramolecular proton transfer via His 64 is not a dominating pathway in the catalytic reaction. The variants also catalyze the hydrolysis of 4-nitrophenyl acetate. The pKa values for the activity-controlling group are between 6.8 and 7.0 for all studied forms of the enzyme except the Glu 64 variant which shows a complex pH dependence with the major pKa shifted to 8.4.  相似文献   

7.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

8.
A single mutation, involving the replacement of an arginine residue with histidine to reconstruct a zinc-binding site, suffices to change a catalytically inactive murine carbonic anhydrase-related protein (CARP) to an active carbonic anhydrase with a CO2-hydration turnover number of 1.2 x 104 s-1. Further mutations, leading to a more 'carbonic anhydrase-like' active-site cavity, results in increased activity. A quintuple mutant having His94, Gln92, Val121, Val143, and Thr200 (human carbonic anhydrase I numbering system) shows kcat = 4 x 104 s-1 and kcat/Km = 2 x 107 M-1.s-1, greatly exceeding the corresponding values for carbonic anhydrase isozyme III and approaching those characterizing carbonic anhydrase I. In addition, a buffer change from 50 mM Taps/NaOH to 50 mM 1, 2-dimethylimidazole/H2SO4 at pH 9 results in a 14-fold increase in kcat for this quintuple mutant. The CO2-hydrating activity of a double mutant with His94 and Gln92 shows complex pH-dependence, but the other mutants investigated behave as if the activity (kcat/Km) is controlled by the basic form of a single group with pKa near 7.7. In a similar way to human carbonic anhydrase II, the buffer behaves formally as a second substrate in a ping-pong pattern, suggesting that proton transfer between a zinc-bound water molecule and buffer limits the maximal rate of catalysis in both systems at low buffer concentrations. However, the results of isotope-exchange kinetic studies suggest that proton shuttling via His64 is insignificant in the CARP mutant in contrast with carbonic anhydrase II. The replacement of Ile residues with Val in positions 121 or 143 results in measurable 4-nitrophenyl acetate hydrolase activity. The pH-rate profile for this activity has a similar shape to those of carbonic anhydrase I and II. CD spectra of the double mutant with His94 and Gln92 are variable, indicating an equilibrium between a compact form of the protein and a 'molten globule'-like form. The introduction of Thr200 seems to stabilize the protein.  相似文献   

9.
Nukacin ISK-1, a type-A(II) lantibiotic, comprises 27 amino acids with a distinct linear N-terminal and a globular C-terminal region. To identify the positional importance or redundancy of individual residues responsible for nukacin ISK-1 antimicrobial activity, we replaced the native codons of the parent peptide with NNK triplet oligonucleotides in order to generate a bank of nukacin ISK-1 variants. The bioactivity of each peptide variant was evaluated by colony overlay assay, and hence we identified three Lys residues (Lys1, Lys2 and Lys3) that provided electrostatic interactions with the target membrane and were significantly variable. The ring structure of nukacin ISK-1 was found to be crucially important as replacing the ring-forming residues caused a complete loss of bioactivity. In addition to the ring-forming residues, Gly5, His12, Asp13, Met16, Asn17 and Gln20 residues were found to be essential for antimicrobial activity; Val6, Ile7, Val10, Phe19, Phe21, Val22, Phe23 and Thr24 were relatively variable; and Ser4, Pro8, His15 and Ser27 were extensively variable relative to their positions. We obtained two variants, Asp13Glu and Val22Ile, which exhibited a twofold higher specific activity compared with the wild-type and are the first reported type-A(II) lantibiotic mutant peptides with increased potency.  相似文献   

10.
Digestion of the native pig kidney fructose 1,6-bisphosphatase tetramer with subtilisin cleaves each of the 35,000-molecular-weight subunits to yield two major fragments: the S-subunit (Mr ca. 29,000), and the S-peptide (Mr 6,500). The following amino acid sequence has been determined for the S peptide: AcThrAspGlnAlaAlaPheAspThrAsnIle Val ThrLeuThrArgPheValMetGluGlnGlyArgLysAla ArgGlyThrGlyGlu MetThrGlnLeuLeuAsnSerLeuCysThrAlaValLys AlaIleSerThrAla z.sbnd;ValArgLysAlaGlyIleAlaHisLeuTyrGlyIleAla. Comparison of this sequence with that of the NH2-terminal 60 residues of the enzyme from rabbit liver (El-Dorry et al., 1977, Arch. Biochem. Biophys.182, 763) reveals strong homology with 52 identical positions and absolute identity in sequence from residues 26 to 60.Although subtilisin cleavage of fructose 1,6-bisphosphatase results in diminished sensitivity of the enzyme to AMP inhibition, we have found no AMP inhibition-related amino acid residues in the sequenced S-peptide. The loss of AMP sensitivity that occurs upon pyridoxal-P modification of the enzyme does not result in the modification of lysyl residues in the S-peptide. Neither photoaffinity labeling of fructose 1,6-bisphosphatase with 8-azido-AMP nor modification of the cysteinyl residue proximal to the AMP allosteric site resulted in the modification of residues located in the NH2-terminal 60-amino acid peptide.  相似文献   

11.
The platelet-activating factor (PAF) represents a phospholipid with complex biological functions, including involvement in inflammatory processes. The degrading enzyme PAF acetylhydrolase (PAFAH) represents a candidate for asthma and other atopic diseases. Two loss-of-function mutations of PAFAH are associated with severe asthma in Japanese individuals. Our aim was to look for further PAFAH variants in white populations, their possible association with atopic and asthmatic phenotypes, and their functional importance. We picked up three common variants in the PAFAH gene: Arg92His (exon 4), Ile198Thr (exon 7), and Ala379Val (exon 11). The known loss-of-function mutations were not seen. The variant allele Thr198 was found to be highly associated with total IgE concentrations in an atopic population (P=.009) and with "atopic asthma" in an asthmatic population (P=.008). The variant allele Val379 was found to be highly associated with "specific sensitization" in the atopic population (P=.002) and with "asthma" in the asthmatic population (P=.003). By use of recombinant PAFAH enzymes, the variant Val379 showed increased (14 microM) and Thr198 markedly increased (42 microM) KM values compared to the wild type (7 microM); furthermore, Vmax of Val379 was highly increased (132%). Thr198 and Val379 influence plasmatic PAFAH toward lower substrate affinities and therefore are very likely to prolong the activities of PAF. At the same time, they are associated with an increased risk to develop asthma and atopy. Thus, two PAFAH variants seem to play a key role in atopic and asthmatic processes in Caucasian populations.  相似文献   

12.
The three-dimensional structure of bovine carbonic anhydrase III (BCA III) from red skeletal muscle cells has been determined by molecular replacement methods. The structure has been refined at 2.0 Å resolution by both constrained and restrained structure-factor least squares refinement. The current crystallographic R-value is 19.2% and 121 solvent molecules have so far been found associated with the protein. The structure is highly similar to the refined structure of human carbonic anhydrase II. Some differences in amino acid sequence and structure between the two isoenzymes are discussed. In BCA III, Lys 64 and Arg 91 (His 64 and Ile 91 in HCA II) are both pointing out from the active site cavity forming salt bridges with Glu 4 and Asp 72 (His 4 and Asp 72 in HCA II), respectively. However, Arg 67 and Phe 198 (Asn 67 and Leu 198 in HCA II) are oriented towards the zinc ion and significantly reduce the volume of the active site cavity. Phe 198 particularly reduces the size of the substrate binding region at the “deep water” position at the bottom of the cavity and we sugest that this is one of the major reasons for the differences in catalytic properties of isoenzyme III as compared to isozyme II. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Two allelic variants and eight site-directed mutants of cytochrome P450 2B1 differing at residue 478 have been expressed in COS cells and assayed for androstenedione hydroxylase activities. The 478Gly and 478Ala variants and five mutants (Ser, Thr, Val, Ile, and Leu) exhibited 16 beta-OH:16 alpha-OH ratios ranging from 0.7 to 9.3, whereas the Pro, Glu, and Arg mutants were expressed but inactive. The seven samples active toward androstenedione also exhibited testosterone 16 beta-OH:16 alpha-OH ratios ranging from 0.4 to 2.3. With both steroids, the Gly variant had the highest 16 beta-hydroxylase activity, and the 16 beta-OH:16 alpha-OH ratio increased with the size of aliphatic size chains (Ala, Val, and Ile/Leu). The highest ratio of androgen 15 alpha:16-hydroxylation was observed with the Ser mutant. On the basis of previous work indicating decreased susceptibility of the 478Ala variant in liver microsomal and reconstituted systems to inactivation by chloramphenicol analogs, methodology was refined for monitoring enzyme inactivation in COS cell microsomes. The Gly and Ala variants were inactivated by chloramphenicol with similar rate constants, whereas the Ser and Val mutants were inactivated more slowly, and the Leu mutant was refractory. Only the Gly variant was inactivated by the chloramphenicol analog N-(2-p-nitrophenethyl)chlorofluoroacetamide. Thus, the side chain of residue 478 appears to be a major determinant of enzyme inactivation as well as of androgen hydroxylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The hydration of CO2 catalyzed by human carbonic anhydrase II (HCA II) is accompanied by proton transfer from the zinc-bound water of the enzyme to solution. We have replaced the proton shuttling residue His 64 with Ala and placed cysteine residues within the active-site cavity by mutating sites Trp 5, Asn 62, Ile 91, and Phe 131. These mutants were modified at the single inserted cysteine with imidazole analogs to introduce new potential shuttle groups. Catalysis by these modified mutants was determined by stopped-flow and 18O-exchange methods. Specificity in proton transfer was demonstrated; only modifications of the Cys 131-containing mutant showed enhancement in the proton transfer step of catalysis compared with unmodified Cys 131-containing mutant. Modifications at other sites resulted in up to 3-fold enhancement in rates of CO2 hydration, with apparent second-order rate constants near 350 microM(-1) s(-1). These are among the largest values of kcat/Km observed for a carbonic anhydrase.  相似文献   

15.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

16.
Chinese hamster ovary cells grown in cell culture were broken and fractionated by differential centrifugation. Four principal fractions: nuclear and membrane, microsomal, postribosomal, and supernatant were obtained. The distribution of aminoacyl-tRNA synthetases in these four fractions was determined for all twenty amino acids.It was shown that there is a differential distribution of synthetases. Activities specific for eight amino acids: Ala, Ser, Gly, Cys, His, Arg, Thr and Pro were found mainly in the supernatant fraction. Activities specific for eleven amino acids: Asp, Asn, Glu, Gln, Ile, Leu, Lys, Met, Phe, Tyr and Val were found mainly in the postribosomal fraction. Four activities were found at significant levels in the microsomal fraction: Asp, Phe, Lys and Pro. The nuclear and membrane fraction contained activity for Lys, His, Asp and Thr.Changes in aminoacyl-tRNA synthetase activities in various fractions from preparations made by breaking cells with a membrane-dissociating detergent showed that some of the aminoacyl-tRNA synthetase activities may be membrane bound.  相似文献   

17.
A family of mutant amidases has been derived by experimental evolution of the aliphatic amidase of Pseudomonas aeruginosa strain PAC1. Mutation amiE16, in the structural gene for the enzyme, results in the production of the mutant B amidase by strain B6. This strain, unlike the wild-type, can utilize butyramide for growth. Strain B6 gave rise by a single mutational event to strain V9, utilizing valeramide, and strain PhB3, utilizing phenylacetamide. Strain V9 was not itself able to utilize phenylacetamide but gave rise by mutation to the phenylacetamide-utilizing mutant PhV1. Peptide 108 was isolated from chymotryptic digests of mutant amidases from strains B6, PhB3 and PhV1, but could not be detected in chymotryptic digests of the wild-type amidase. The sequence of peptide 108 was established as Met-Arg-His-Gly-Asp-Ile-Phe. Thermolytic digests of mutant amidases from strains B6, PhB3, PhV1 and V9 were compared with digests of the wild-type amidase. A peptide of the composition Met, Arg, His, Gly2, Asp3, Ile, Ser3, Thr, Val was found in the digest of the wild-type amidase and was replaced in the digests of the mutant amidases by a peptide of the composition Met, Arg, His, Gly2, Asp3, Ile, Ser3, Thr, Val, Phe. Mutation amiE16 is common to the four mutant enzymes and can be accounted for by the mutation Ser leads to Phe. The sequence of the chymotryptic peptide corresponds with the N-terminal sequence of the amidase protein, and can also be related to the thermolysin peptides. It is concluded that mutation amiE16 is a Ser leads to Phe change at position 7 from the N-terminus and the effect of this on the enzyme conformation is discussed.  相似文献   

18.
NH2-terminal sequence analysis was performed on subregions of human plasma fibronectin including 24,000-dalton (24K) DNA-binding, 29,000-dalton (29K) gelatin-binding, and 18,000-dalton (18K) heparin-binding tryptic fragments. These fragments were obtained from fibronectin after extensive trypsin digestion followed by sequential affinity purification on gelatin-Sepharose, heparin-agarose, and DNA-cellulose columns. The gelatin-binding fragment was further purified by gel filtration on Sephadex G-100, and the DNA-binding and heparin-binding fragments were further purified by high-performance liquid chromatography. The 29K fragment had the following NH2-terminal sequence: AlaAlaValTyrGlnProGlnProHisProGlnProPro (Pro)TyrGlyHis HisValThrAsp(His)(Thr)ValValTyrGly(Ser) ?(Ser)?-Lys. The NH2-terminal sequence of a 50K, gelatin-binding, subtilisin fragment by L. I. Gold, A. Garcia-Pardo, B. Prangione, E. C. Franklin, and E. Pearlstein (1979, Proc. Nat. Acad. Sci. USA76, 4803–4807) is identical to positions 3–19 (with the exception of some ambiguity at position 14) of the 29K fragment. These data strongly suggest that the 29K tryptic fragment is included in the 50K subtilisin fragment, and that subtilisin cleaves fibronectin between the Ala2Val3 residues of the 29K tryptic fragment. The 18K heparin-binding fragment had the following NH2-terminal sequence: (Glu)AlaProGlnProHisCysIleSerLysTyrIle LeuTyrTrpAspProLysAsnSerValGly?(Pro) LysGluAla?(Val)(Pro). The 29K gelatin-binding and 18K heparin-binding fragments have proline-rich NH2-terminal sequences suggesting that they may have arisen from protease-sensitive, random coil regions of fibronectin corresponding to interdomain regions preceding macromolecular-binding domains. Both of these fragments contain the identical sequence ProGlnProHis, a sequence which may be repeated in other interdomain regions of fibronectin. The 24K DNA-binding fragment has the following NH2-terminal sequence: SerAspThrValProSerProCysAspLeuGlnPhe ValGluValThrAspVal LysValThrIleMetTrpThrProProGluSerAla ValThrGlyTyrArgVal AspValCysProValAsnLeuProGlyGluHisGly Gln(Cys)LeuProIleSer. The sequence of positions 9–22 are homologous to positions 15–28 of the α chain of DNA-dependent RNA polymerase from Escherichia coli. The homology observed suggests that this stretch of amino acids may be a DNA-binding site.  相似文献   

19.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

20.
C A Fierke  T L Calderone  J F Krebs 《Biochemistry》1991,30(46):11054-11063
Twelve amino acid substitutions of varying size and hydrophobicity were constructed at Val 143 in human carbonic anhydrase II (including Gly, Ser, Cys, Asn, Asp, Leu, Ile, His, Phe and Tyr) to examine the catalytic roles of the hydrophobic pocket in the active site of this enzyme. The CO2 hydrase and p-nitrophenyl acetate (PNPA) esterase activities, the pKa of the zinc-water ligand, the inhibition constant for cyanate (KOCN), and the binding constants for sulfonamide inhibitors were measured for various mutants and correlated with the size and hydrophobicity of the substituted amino acid. The kcat/KM for PNPA hydrolysis and KOCN are linearly dependent on the hydrophobicity of the amino acid at position 143. All of the activities of CAII are decreased by more than a factor of 10(3) when large amino acids (Phe and Tyr) are substituted for Val 143, but the CO2 hydrase activity is the most sensitive to the size and structure of the substituted amino acid. Addition of a single methyl group (V143I) decreases the activity 8-fold, while substitution of valine by tyrosine essentially destroys the enzyme function (kcat/KM for CO2 hydration is decreased by more than 10(5)-fold). KOCN does not increase until Phe is substituted for Val 143, suggesting that the cyanate and CO2 binding sites are not identical. The functional data in conjunction with X-ray crystallographic studies of four of the mutants [Alexander et al., 1991 (following paper in this issue)] allow interpretation of the mutants at a molecular level and mapping of the region of the active site important for CO2 association. The hydrophobic pocket, including residues Val 121 and Val 143, is important for CO2 and PNPA association; if the pocket is blocked, substrates cannot approach the zinc-hydroxide with the correct orientation to react. The interaction between Val 143 and CO2 is relatively weak (less than or equal to 0.5 kcal/mol) and nonspecific; the association site does not tightly hold CO2 in one fixed orientation for reaction with the zinc-hydroxide. This mechanism of catalysis may reflect a decreased requirement for specific orientation by CO2 since it is a symmetrical molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号