首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome of avian leukemia virus E26 shares homology with v-myb, the oncogene of avian myeloblastosis virus, and encodes a protein with an Mr of 135,000. Analyses of tryptic oligopeptides show that this protein is related to the proteins encoded by gag (Pr76gag) as well as v-myb (p45v-myb[AMV] ) and c-myb (p75c-myb). We found no evidence for the existence of additional myb-related proteins or subgenomic species of myb-related RNA in myeloblasts transformed by strain E26.  相似文献   

2.
We demonstrated that molecular clones of the v-myb oncogene of avian myeloblastosis virus (AMV) can direct the synthesis of p48v-myb both in avian and mammalian cells which are not targets for transformation by AMV. To accomplish this, we constructed dominantly selectable avian leukosis virus derivatives which efficiently coexpress the protein products of the Tn5 neo gene and the v-myb oncogene. The use of chemically transformed QT6 quail cells for proviral DNA transfection or retroviral infection, followed by G418 selection, allowed the generation of cell lines which continuously produce both undeleted infectious neo-myb viral stocks and p48v-myb. The presence of a simian virus 40 origin of replication in the proviral plasmids also permitted high-level transient expression of p48v-myb in simian COS cells without intervening cycles of potentially mutagenic retroviral replication. These experiments establish that the previously reported DNA sequence of v-myb does in fact encode p48v-myb, the transforming protein of AMV.  相似文献   

3.
The oncogene v-myb of avian myeloblastosis virus is expressed from an mRNA that arises by splicing of the viral genome. In previous work, we described a mutant strain of avian myeloblastosis virus (tsAMV) that elicits temperature-sensitive transformation and suggested that the mutation affects production of the mRNA for v-myb. We now report that the principal determinant of the biochemical phenotype of tsAMV is a point mutation located in a crucial region of the splice acceptor site for v-myb mRNA. The mutation reduces v-myb mRNA production but could account for the conditional phenotype only in combination with an independent effect of temperature on the splicing of both wild-type and mutant viral RNAs, which we also describe here. Our findings dramatize the manner in which retroviruses normally control the splicing of their RNAs and implicate the sequence of the splice acceptor site in the control.  相似文献   

4.
env-encoded residues are not required for transformation by p48v-myb.   总被引:9,自引:6,他引:3  
The v-myb oncogene of avian myeloblastosis virus induces acute myeloblastic leukemia in chickens and transforms avian myeloid cells in vitro. The protein product of this oncogene, p48v-myb, is partially encoded by the retroviral gag and env genes. We demonstrated that the env-encoded carboxyl terminus of p48v-myb is not required for transformation. Our results showed, in addition, that a coding region of c-myb which is not essential for transformation was transduced by avian myeloblastosis virus.  相似文献   

5.
The protein product of the v-myb oncogene of avian myeloblastosis virus, p48v-myb, differs structurally in several ways from its normal cellular homolog, p75c-myb. We demonstrated that the 11 specific amino acid substitutions found in two independent molecular clones of this virus were not required for the transformation of myeloblasts by v-myb.  相似文献   

6.
Coordinate regulation of myelomonocytic phenotype by v-myb and v-myc.   总被引:4,自引:1,他引:3  
Both avian myeloblastosis virus (by the action of v-myb) and avian myelocytomatosis virus MC29 (by the action of v-myc) transform cells of the myelomonocytic lineage. Whereas avian myeloblastosis virus elicits a relatively immature phenotype, cells transformed by MC29 resemble mature macrophages. When cells previously transformed by v-myb were superinfected with MC29, their phenotype was rapidly altered to that of a more mature cell. These superinfected cells expressed both v-myb (at a level similar to that found before superinfection) and v-myc. It therefore appears that the expression of v-myc can elicit certain properties of a more differentiated phenotype. In addition, unlike cells transformed by v-myb alone, the cells expressing both v-myb and v-myc could not be induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate to differentiate to fully mature macrophages. Cells with a morphology similar to that of the superinfected cells were elicited by simultaneously infecting yolk sac macrophages with avian myeloblastosis virus and MC29. Such cells expressed both v-myb and v-myc. These results indicate that expression of v-myb and v-myc in infected cells coordinately regulates myelomonocytic phenotype and that the two viral oncogenes vary in their ability to interfere with tumor promoter-induced differentiation. Our findings also sustain previous suggestions that the oncogenes v-myb and v-myc may not transform target cells by simply blocking differentiation.  相似文献   

7.
Cells of a clone of avian myeloblastosis virus-transformed myeloblasts were induced to differentiate to adherent myelomonocytic cells by treatment with lipopolysaccharide. These adherent cells were subcultured and maintained as a line for more than 6 months with lipopolysaccharide present. Cells of this line were induced to differentiate to nondividing macrophage-like cells by the addition of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. In this way, the following homogeneous cell populations representing three distinct stages of myeloid differentiation were obtained: I, actively dividing myeloblasts that grew in suspension: II, actively dividing adherent cells; and III, fully differentiated nondividing cells resembling macrophages. When the expression of v-myb (the oncogene of avian myeloblastosis virus) was examined in cells of these three differentiation stages, it was found that the protein encoded by v-myb (p45v-myb) continued to be synthesized in similar quantities and showed no obvious alteration (assessed by partial proteolytic digestion and two-dimensional gel electrophoresis) during differentiation. These results show that cells transformed by v-myb can be induced to differentiate without affecting the expression of v-myb and imply that, during differentiation, the effect of v-myb is suppressed by a mechanism other than altered expression of the oncogene.  相似文献   

8.
R D Press  A Kim  D L Ewert    E P Reddy 《Journal of virology》1992,66(9):5373-5383
To test the effect of long terminal repeat (LTR) regulatory sequences on the transforming capability of the v-myb oncogene from avian myeloblastosis virus (AMV), we have constructed replication-competent avian retroviral vectors with nearly identical structural genes that express v-myb from either AMV or Rous sarcoma virus (RSV) LTRs. After transfection into chicken embryo fibroblasts, virus-containing cell supernatants were used to infect chicken myelomonocytic target cells from preparations of 16-day-old embryonic spleen cells. Both wild-type AMV and the virus expressing v-myb from AMV LTRs (RCAMV-v-myb) were able to transform the splenocyte cultures into a population of immature myelomonocytic cells. The transformed cells expressed the p48v-Myb oncoprotein and formed compact foci when grown in soft agar. In contrast, the virus expressing v-myb from RSV LTRs (RCAS-v-myb) was repeatedly unable to transform the same splenocyte cells, despite being able to infect fibroblasts with high efficiency. This difference in the transforming activities of v-myb-expressing viruses with different LTRs most likely results from the presence of a factor (or factors) within the appropriate myelomonocytic target cell that promotes specific expression from the AMV but not from the RSV LTR.  相似文献   

9.
J S Lipsick 《Journal of virology》1987,61(10):3284-3287
The v-myb oncogene of avian myeloblastosis virus transforms myeloid cells exclusively, both in vivo and in vitro. The c-myb proto-oncogene from which v-myb arose is expressed at relatively high levels in immature hematopoietic cells of the lymphoid, erythroid, and myeloid lineages but not in myeloblasts transformed by v-myb. This finding suggested that the nuclear v-myb gene product p48v-myb might act directly to inhibit the normal expression of the c-myb gene. I have therefore used a selectable avian retroviral vector to express p48v-myb in avian erythroblasts which normally express high levels of the c-myb gene product p75c-myb. The results demonstrate that p48v-myb and p75c-myb can be coexpressed in the nuclei of cloned cells. Therefore, p48v-myb does not invariably prevent the expression of p75c-myb.  相似文献   

10.
The product of the v-myb oncogene of avian myeloblastosis virus is a nuclear protein with an associated DNA-binding activity. We demonstrated that the highly conserved amino-terminal domain of p48v-myb is required for its associated DNA-binding activity. This activity is not required for the nuclear localization of p48v-myb. Furthermore, the associated DNA-binding activity and nuclear localization of p48v-myb together are not sufficient for transformation.  相似文献   

11.
The v-myb oncogene of avian myeloblastosis virus causes acute myelomonocytic leukemia in chickens and transforms avian myeloid cells in vitro. Its protein product p48v-myb is a nuclear, sequence-specific, DNA-binding protein which activates gene expression in transient DNA transfection studies. To investigate the relationship between transformation and trans-activation by v-myb, we constructed 15 in-frame linker insertion mutants. The 12 mutants which transformed myeloid cells also trans-activated gene expression, whereas the 3 mutants which did not transform also did not trans-activate. This implies that trans-activation is required for transformation by v-myb. One of the transformation-defective mutants localized to the cell nucleus but failed to bind DNA. The other two transformation-defective mutants localized to the cell nucleus and bound DNA but nevertheless failed to trans-activate. These latter mutants define two distinct domains of p48v-myb which control trans-activation by DNA-bound protein, one within the amino-terminal DNA-binding domain itself and one in a carboxyl-terminal domain which is not required for DNA binding.  相似文献   

12.
Human Xeroderma pigmentosum "normal" fibroblasts AS16 (XP4 VI) were transformed after transfection with a recombinant v-myb clone. In this clone (pKXA 3457) derived from avian myeloblastosis virus (AMV), the expression of the oncogene sequences is driven by the AMV U-5 LTR promoter. The transformed cells (ASKXA), which have integrated a rearranged v-myb oncogene, grow in agar, are not tumorigenic in nude mice, and express a 45-kDa v-myb protein. The HMW DNA of these cells transform chicken embryo fibroblasts. The c-Ha-ras oncogene is overexpressed in the ASKXA cells but not in the parental "normal" AS16 cells and a revertant clone (ASKXA Cl 1.1 G). Our results lead to the conclusion that the XP fibroblasts are phenotypically transformed by the presence of the transfected v-myb oncogene, which is able to induce an overexpression of the c-Ha-ras gene.  相似文献   

13.
The v-myb oncogene of avian myeloblastosis virus causes acute myelomonocytic leukemia in vivo and transforms only myeloid cells in vitro. Its product, p48v-myb, is a nuclear protein of unknown function. To determine structure-function relationships for this protein, we constructed a series of deletion mutants of v-myb, expressed them in retroviral vectors, and studied their biochemical and biological properties. We used these mutants to identify two separate domains of p48v-myb which had distinct roles in its accumulation in the cell nucleus. We showed that the viral sequences which normally encode both termini of p48v-myb were dispensible for transformation. In contrast, both copies of the highly conserved v-myb amino-terminal repeat were required for transformation. We also identified a carboxyl-terminal domain of p48v-myb which was required for the growth of v-myb-transformed myeloblasts in soft agar but not for morphological transformation.  相似文献   

14.
15.
16.
Nucleotide sequence of cDNA clones of the murine myb proto-oncogene.   总被引:51,自引:11,他引:40       下载免费PDF全文
We have isolated cDNA clones of murine c-myb mRNA which contain approximately 2.8 kb of the 3.9-kb mRNA sequence. Nucleotide sequencing has shown that these clones extend both 5' and 3' to sequences homologous to the v-myb oncogenes of avian myeloblastosis virus and avian leukemia virus E26. The sequence contains an open reading frame of 1944 nucleotides, and could encode a protein which is both highly homologous, and of similar size (71 kd), to the chicken c-myb protein. Examination of the deduced amino acid sequence of the murine c-myb protein revealed the presence of a 3-fold tandem repeat of 52 residues near the N terminus of the protein, and has enabled prediction of some of the likely structural features of the protein. These include a high alpha-helix content, a basic region toward the N terminus of the protein and an overall globular configuration. The arrangement of genomic c-myb sequences, detected using the cDNA clones as probes, was compared with the reported structure of rearranged c-myb in certain tumour cells. This comparison suggested that the rearranged c-myb gene may encode a protein which, like the v-myb protein, lacks the N-terminal region of c-myb.  相似文献   

17.
The transforming protein of Rous sarcoma virus, p60src, has associated with it a protein kinase activity. We examined whether a correlation exists between the cellular concentration of enzymatically active p60src and the degree to which chick cells are transformed by mutants of Rous sarcoma virus which are temperature-sensitive for transformation. Such a correlation does exist, but cells infected with some mutants could be shown to contain, at the nonpermissive temperature, an amount of protein kinase activity equal to 30 to 40% of that in a wild-type transformed cell. We quantified the amount of virus-induced protein kinase activity by precipitation of p60src with an excess of antitumor antiserum. Our initial measurements of activity were serious underestimates, due to the lability of the protein kinase activity associated with p60src of at least four temperature-sensitive mutants. In fact, no activity at all was associated with p60src of tsLA90 when immunoprecipitation was performed by standard means. However, when immunoprecipitation was performed with procedures which minimize inactivation, it became apparent both that cells transformed by tsLA90 contained protein kinase activity and that cells infected with either NY68 or BK5 contained at the nonpermissive temperature, one-third to one-half as much activity as wild-type transformed cells. This level of activity was much more than that arising from p60sarc in uninfected cells. In uninfected cells we found an amount of protein kinase activity which varied from 3 to 5% as much as that in a virally transformed cell. The lability of the protein kinase activity of each of these mutants is a further demonstration that this activity is essential for the transformation of cells by Rous sarcoma virus. So as to explain the high protein kinase levels in cells infected with NY68 and BK5 at the nonpermissive temperature, the idea that transformation may be a response to a small quantitative change in the total activity of p60src and the possibility that there may be more than one viral function which is essential for transformation are discussed.  相似文献   

18.
We have developed procedures for the purification of a 6,000-dalton protein from avian myeloblastosis virus. This protein is a major component of avian myeloblastosis virus, accounting for over 7% of total protein, and thus is equimolar with the other internal structural proteins in virions. As described in the accompanying paper (Hunter et al., J. Virol. 45:885-888, 1983), the results of N-terminal amino acid sequence analysis identify the protein as a product of the gag gene. We suggest denoting this protein as p10, according to nomenclature that is already in use for a previously identified but poorly defined low-molecular-weight protein or proteins of avian sarcoma and leukemia viruses. In virions p10 appears to be located between the core and the membrane. Several of its properties may explain why p10 has not been characterized previously. Among these are its abnormal amino acid composition, its solubility under conditions where most proteins are fixed into sodium dodecyl sulfate-polyacrylamide gels, and the variability in its electrophoretic migration in different avian sarcoma viruses.  相似文献   

19.
Y C Chen  M J Hayman  P K Vogt 《Cell》1977,11(3):513-521
Fibroblasts from European field vole (Microtus agrestis) and from normal rat kidney (NRK) have been infected by avian sarcoma virus mutants which are temperature-sensitive for the maintenance of transformation. These cells are transformed at 33 degrees C, but show normal cell characteristics in morphology, colony formation in agar, saturation density, sugar uptake and membrane proteins at 39 degrees C and 40 degrees C, the nonpermissive temperatures. Ts mutant virus was rescued from most of the ts transformed cell lines. NRK cells infected by avian sarcoma virus ts mutants and kept at the nonpermissive temperature can be transformed by wild-type avian sarcoma virus. The susceptibility of the temperature-sensitive NRK lines to this transformation is higher than the susceptibility of uninfected NRK at either permissive or nonpermissive temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号