首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing accurate methods to quantify age-related muscle loss (sarcopenia) could greatly accelerate development of therapies to treat muscle loss in the elderly, as current methods are inaccurate or expensive. The current gold standard method for quantifying sarcopenia is dual-energy X-ray absorptiometry (DXA) but does not measure muscle directly—it is a composite measure quantifying “lean mass” (muscle) excluding fat and bone. In humans, DXA overestimates muscle mass, which has led to erroneous conclusions about the importance of skeletal muscle in human health and disease. In animal models, DXA is a popular method for measuring lean mass. However, instrumentation is expensive and is potentially limited by anesthesia concerns. Recently, the D3-creatine (D3Cr) dilution method for quantifying muscle mass was developed in humans and rats. This method is faster, cheaper, and more accurate than DXA. Here, we demonstrate that the D3Cr method is a specific assay for muscle mass in mice, and we test associations with DXA and body weight. We evaluated the D3Cr method compared to DXA-determined lean body mass (LBM) in aged mice and reported that DXA consistently overestimates muscle mass with age. Overall, we provide evidence that the D3Cr dilution method directly measures muscle mass in mice. Combined with its ease of use, accessibility, and non-invasive nature, the method may prove to more quickly advance development of preclinical therapies targeting sarcopenia.  相似文献   

2.
The objective of this study was to determine the effect of creatine supplementation on performance and body composition of swimmers. Eighteen swimmers were evaluated in terms of post-performance lactate accumulation, body composition, creatine and creatinine excretion, and serum creatinine concentrations before and after creatine or placebo supplementation. No significant differences were observed in the marks obtained in swimming tests after supplementation, although lactate concentrations were higher in placebo group during this period. In the creatine-supplemented group, urinary creatine, creatinine, and body mass, lean mass and body water were significantly increased, but no significant difference in muscle or bone mass was observed. These results suggest that creatine supplementation cannot be considered to be an ergogenic supplement ensuring improved performance and muscle mass gain in swimmers.  相似文献   

3.
The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained morphological changes in human skeletal muscle, leading to physical performance enhancement.  相似文献   

4.
The choice of method of expressing isotopic enrichment in tracer kinetic experiments utilizing stable isotopes was found to affect the calculation of tracee pool size and half-life. The most commonly used definition, the difference between enriched and natural abundance, i.e. atom percent excess, was found to result in significant error in model systems when the dose of tracer was 10% of the pool size. Errors in determining first-order rate constants of efflux and in pool sizes decreased with decreasing ratio of tracer to tracee. Error in determining pool size increased with longer 'sampling' periods, while error in determining the rate constant increased with shorter sampling periods. Of three less frequently used expressions of isotopic enrichment two were found to yield the exact answers in model systems. The correct expressions of isotopic enrichment were linear functions of the quantity of tracer in the system. A practical example demonstrated the effect of choice of expression of enrichment on estimates of whole body copper pool size and turnover in dairy cattle.  相似文献   

5.
The tissue origin of 3-methylhistidine (N tau-methylhistidine) was investigated in adult female rats. The decay of labelling of urinary 3-methylhistidine was compared with the labelling of protein-bound 3-methylhistidine in skeletal muscle and intestine after the injection of [methyl-14C]methionine. The decay curve for urinary 3-methylhistidine was much steeper than that in muscle or intestine, falling to values lower than those in either tissue after 30 days. The lack of decay of labelling in muscle during the first 30 days is shown to result from the persistence of label in the precursor S-adenosylmethionine. The relative labelling of urinary, skeletal-muscle and intestinal 3-methylhistidine cannot be explained in terms of skeletal muscle accounting for a major proportion of urinary 3-methylhistidine. Measurements were also made of the steady-state synthesis rate of protein-bound 3-methylhistidine in intestinal smooth muscle in vivo in adult female rats. This involved measurement of the overall rate of protein synthesis and measurement of the relative rates of synthesis of 3-methylhistidine and of mixed protein. The synthesis rate of 3-methylhistidine was 29.1%/day, compared with the overall rate of 77.1%/day for mixed, non-mucosal intestinal protein. Measurement of the amount of 3-methylhistidine in skeletal muscle (0.632 +/- 0.024 mumol/g) and in the whole body (0.332 +/- 0.013 mumol/g) indicate that, although the muscle pool is 86% of the total, because of its slow turnover rate of 1.1-1.6%/day, it only accounts for 38-52% of the observed excretion. Measurements of the mass of the intestine (9.95 g/250 g body wt.) and protein-bound 3-methylhistidine content (0.160 mumol/g of tissue) indicate a pool size of 1.59 mumol/250 micrograms rat. Thus 463 nmol of the urinary excretion/day would originate from the intestine, 22% of the total. The tissue source of the remaining urinary excretion is not identified, but other non-muscle sources constituting about 10% of the whole-body pool could account for this with turnover rates of only 6%/day, a much lower value than the turnover rate in the intestine.  相似文献   

6.
Rawson ES  Venezia AC 《Amino acids》2011,40(5):1349-1362
The ingestion of the dietary supplement creatine (about 20 g/day for 5 days or about 2 g/day for 30 days) results in increased skeletal muscle creatine and phosphocreatine. Subsequently, the performance of high-intensity exercise tasks, which rely heavily on the creatine-phosphocreatine energy system, is enhanced. The well documented benefits of creatine supplementation in young adults, including increased lean body mass, increased strength, and enhanced fatigue resistance are particularly important to older adults. With aging and reduced physical activity, there are decreases in muscle creatine, muscle mass, bone density, and strength. However, there is evidence that creatine ingestion may reverse these changes, and subsequently improve activities of daily living. Several groups have demonstrated that in older adults, short-term high-dose creatine supplementation, independent of exercise training, increases body mass, enhances fatigue resistance, increases muscle strength, and improves the performance of activities of daily living. Similarly, in older adults, concurrent creatine supplementation and resistance training increase lean body mass, enhance fatigue resistance, increase muscle strength, and improve performance of activities of daily living to a greater extent than resistance training alone. Additionally, creatine supplementation plus resistance training results in a greater increase in bone mineral density than resistance training alone. Higher brain creatine is associated with improved neuropsychological performance, and recently, creatine supplementation has been shown to increase brain creatine and phosphocreatine. Subsequent studies have demonstrated that cognitive processing, that is either experimentally (following sleep deprivation) or naturally (due to aging) impaired, can be improved with creatine supplementation. Creatine is an inexpensive and safe dietary supplement that has both peripheral and central effects. The benefits afforded to older adults through creatine ingestion are substantial, can improve quality of life, and ultimately may reduce the disease burden associated with sarcopenia and cognitive dysfunction.  相似文献   

7.
Creatine plays a key role in muscle function and its evaluation is important in athletes. In this study, urinary creatine concentration was measured in order to highlight its possible significance in monitoring sprinters. The study included 51 sprinters and 25 age- and sex-matched untrained subjects as a control group. Body composition was measured and dietary intake estimated. Urine samples were collected before and after standardized physical exercise. Creatine was assessed by gas chromatography mass spectrometry. Basal urinary creatine (UC) was significantly lower in sprinters than controls (34±30 vs. 74±3 µmol/mmol creatinine, p < 0.05). UC was inversely correlated with body mass (r = −0.34, p < 0.01) and lean mass (r = −0.30, p < 0.05), and positively correlated with fat mass (r = 0.32, p < 0.05). After acute exercise, urinary creatine significantly decreased in both athletes and controls. UC is low in sprinters at rest and further decreases after exercise, most likely due to a high uptake and use of creatine by muscles, as muscle mass and physical activity are supposed to be greater in athletes than untrained subjects. Further studies are needed to test the value of urinary creatine as a non-invasive marker of physical condition and as a parameter for managing Cr supplementation in athletes.  相似文献   

8.
Nuclear magnetic resonance (NMR)-based metabolomic profiling identified urinary 1- and 3-methylhistidine (1- and 3-MH) as potential biomarkers of skeletal muscle toxicity in Sprague–Dawley rats following 7 and 14 daily doses of 0.5 or 1 mg/kg cerivastatin. These metabolites were highly correlated to sex-, dose- and time-dependent development of cerivastatin-induced myotoxicity. Subsequently, the distribution and concentration of 1- and 3-MH were quantified in 18 tissues by gas chromatography–mass spectrometry. The methylhistidine isomers were most abundant in skeletal muscle with no fiber or sex differences observed; however, 3-MH was also present in cardiac and smooth muscle. In a second study, rats receiving 14 daily doses of 1 mg/kg cerivastatin (a myotoxic dose) had 6- and 2-fold elevations in 1- and 3-MH in urine and had 11- and 3-fold increases in 1- and 3-MH in serum, respectively. Selectivity of these potential biomarkers was tested by dosing rats with the cardiotoxicant isoproterenol (0.5 mg/kg), and a 2-fold decrease in urinary 1- and 3-MH was observed and attributed to the anabolic effect on skeletal muscle. These findings indicate that 1- and 3-MH may be useful urine and serum biomarkers of drug-induced skeletal muscle toxicity and hypertrophy in the rat, and further investigation into their use and limitations is warranted.  相似文献   

9.
Genetically obese female rats (fa/fa) and their lean littermates (Fa/-) were given oral administration of 3,5,3-triiodothyroacetic acid (TRIAC) (20 micrograms/ 100 g of body weight/ day) during 4 weeks. Metabolism of proteins was evaluated in several organs and in skeletal muscle after intraperitoneal injection of 14C and 3H-leucine 6 days and 16 hrs respectively before the sacrifice of animals. We have determined radioactivity of 14C and 3H and the 3H/14C ratio. No significant differences were found in lean and obese rats except in skeletal muscle. The relative protein turnover in skeletal muscle is significantly higher in the obese rats than in the lean rats. Treatment by TRIAC decreases the body weight gain in obese rats compared with controls but it has no statistically significant effect on the relative protein turnover in either obese or lean rats.  相似文献   

10.
We examined the temporal relationship between portacaval anastomosis (PCA), weight gain, changes in skeletal muscle mass and molecular markers of protein synthesis, protein breakdown, and satellite cell proliferation and differentiation. Male Sprague-Dawley rats with end to side PCA (n=24) were compared with sham-operated pair-fed rats (n=24). Whole body weight, lean body mass, and forelimb grip strength were determined at weekly intervals. The skeletal muscle expression of the ubiquitin proteasome system, myostatin, its receptor (the activin 2B receptor) and its signal, cyclin-dependent kinase inhibitor (CDKI) p21, insulin-like growth factor (IGF)-I and its receptor (IGF-I receptor-alpha), and markers of satellite cell proliferation and differentiation were quantified. PCA rats did not gain body weight and had lower lean body mass, forelimb grip strength, and gastrocnemius muscle weight. The skeletal muscle expression of the mRNA of ubiquitin proteasome components was higher in PCA rats in the first 2 wk followed by a lower expression in the subsequent 2 wk (P<0.01). The mRNA and protein of myostatin, activin 2B receptor, and CDKI p21 were higher, whereas IGF-I and its receptor as well as markers of satellite cell function (proliferating nuclear cell antigen, myoD, myf5, and myogenin) were lower at weeks 3 and 4 following PCA (P < 0.05). We conclude that PCA resulted in uninhibited proteolysis in the initial 2 wk. This was followed by an adaptive response in the later 2 wk consisting of an increased expression of myostatin that may have contributed to reduced muscle protein synthesis, impaired satellite cell function, and lower skeletal muscle mass.  相似文献   

11.
The purpose of this case study was to examine the effects of repeated creatine administration on muscle phosphocreatine, plasma creatine, and urine creatine. One male subject (age, 32 years; body mass, 78.4 kg; height, 160 cm; resistance training experience, 15 years) ingested creatine (20 g.d(-1) for 5 days) during 2 bouts separated by a 30-day washout period. Muscle phosphocreatine was measured before and after supplementation. On day 1 of supplementation, blood samples were taken immediately before and hourly for 5 hours following ingestion of 5 g of creatine, and a pharmacokinetic analysis of plasma creatine was conducted. Twenty-four-hour urine collections were conducted before and for 5 days during supplementation. Muscle phosphocreatine increased 45% following the first supplementation bout, decreased 22% during the 30-day washout period, and increased 25% following the second bout. There were no meaningful differences in plasma creatine pharmacokinetic parameters between bouts 1 and 2. Total urine creatine losses during supplementation were 63.2 and 63.4 g during bouts 1 and 2, respectively. The major findings were that (a) a 30-day washout period is insufficient time for muscle phosphocreatine to return to baseline following creatine supplementation but is sufficient time for plasma and urine creatine levels to return to presupplementation values; (b) postsupplementation muscle phosphocreatine levels were similar following bouts 1 and 2 despite 23% higher presupplementation muscle phosphocreatine before bout 2; and (c) the increased muscle phosphocreatine that persisted throughout the 30-day washout period corresponded with maintenance of increased body mass (+2.0 kg). Athletes should be aware that the washout period for muscle creatine to return to baseline levels may be longer than 30 days in some individuals, and this may be accompanied by a persistent increase in body mass.  相似文献   

12.
Amino acids are major nutrient regulators of muscle protein turnover. After protein ingestion, hyperaminoacidemia stimulates increased rates of skeletal muscle protein synthesis, suppresses muscle protein breakdown, and promotes net muscle protein accretion for several hours. These acute observations form the basis for strategized protein intake to promote lean mass accretion, or prevent lean mass loss over the long term. However, factors such as protein dose, protein source, and timing of intake are important in mediating the anabolic effects of amino acids on skeletal muscle and must be considered within the context of evaluating the reported efficacy of long-term studies investigating protein supplementation as part of a dietary strategy to promote lean mass accretion and/or prevent lean mass loss. Current research suggests that dietary protein supplementation can augment resistance exercise-mediated gains in skeletal muscle mass and strength and can preserve skeletal muscle mass during periods of diet-induced energy restriction. Perhaps less appreciated, protein supplementation can augment resistance training-mediated gains in skeletal muscle mass even in individuals habitually consuming ‘adequate’ (i.e., >0.8 g kg?1 day?1) protein. Additionally, overfeeding energy with moderate to high-protein intake (15–25 % protein or 1.8–3.0 g kg?1 day?1) is associated with lean, but not fat mass accretion, when compared to overfeeding energy with low protein intake (5 % protein or ~0.68 g kg?1 day?1). Amino acids represent primary nutrient regulators of skeletal muscle anabolism, capable of enhancing lean mass accretion with resistance exercise and attenuating the loss of lean mass during periods of energy deficit, although factors such as protein dose, protein source, and timing of intake are likely important in mediating these effects.  相似文献   

13.
The mechanism by which human immunodeficiency virus (HIV)-1 infection in humans leads to the erosion of lean body mass is poorly defined. Therefore, the purpose of the present study was to determine whether transgenic (Tg) rats that constitutively overexpress HIV-1 viral proteins exhibit muscle wasting and to elucidate putative mechanisms. Over 7 mo, Tg rats gained less body weight than pair-fed controls exclusively as a result of a proportional reduction in lean, not fat, mass. Fast- and slow-twitch muscle atrophy in Tg rats did not result from a reduction in the in vivo-determined rate of protein synthesis. In contrast, urinary excretion of 3-methylhistidine, as well as the content of atrogin-1 and the 14-kDa actin fragment, was elevated in gastrocnemius of Tg rats, suggesting increased muscle proteolysis. Similarly, Tg rats had reduced cardiac mass, which was independent of a change in protein synthesis. This decreased cardiac mass was associated with a reduction in stroke volume, but cardiac output was maintained by a compensatory increase in heart rate. The HIV-induced muscle atrophy was associated with increased whole body energy expenditure, which was not due to an elevated body temperature or secondary bacterial infection. Furthermore, the atrophic response could not be attributed to the development of insulin resistance, decreased levels of circulating amino acids, or increased tissue cytokines. However, skeletal muscle and, to a lesser extent, circulating insulin-like growth factor I was reduced in Tg rats. Although hepatic injury was implicated by increased plasma levels of aspartate and alanine aminotransferases, hepatic protein synthesis was not different between control and Tg rats. Hence, HIV-1 Tg rats develop atrophy of cardiac and skeletal muscle, the latter of which results primarily from an increased protein degradation and may be related to the marked reduction in muscle insulin-like growth factor I.  相似文献   

14.
It is unclear whether chronic exercise without caloric restriction or weight loss is a useful strategy for obesity reduction in obese men with and without Type 2 diabetes (T2D). We examined the effects of exercise without weight loss on total and regional adiposity and skeletal muscle mass and composition in lean men and in obese men with and without T2D. Twenty-four men participated in 13 wk of supervised aerobic exercise, five times per week for 60 min at a moderate intensity (approximately 60% peak oxygen uptake). Total and regional body composition was measured by magnetic resonance imaging. Skeletal muscle composition was determined using computed tomography. Cardiorespiratory fitness was assessed using a graded maximal treadmill test. Body weight did not change within any group in response to exercise (P > 0.1). Significant reductions in total, abdominal subcutaneous, and visceral fat were observed within each group (P < 0.01). The reduction in total and abdominal subcutaneous fat was not different (P > 0.1) between groups; however, the reduction in visceral fat was greater (P < 0.01) in the obese and T2D groups by comparison to the lean group. A significant (P < 0.01) increase in total skeletal muscle, high-density muscle area, and mean muscle attenuation was observed independent of group, and these changes were not different between groups (P > 0.1). Accordingly, whole body fat-to-muscle ratio was increased (P < 0.01) independent of groups. In conclusion, regular exercise without weight loss is associated with a substantial reduction in total and visceral fat and in skeletal muscle lipid in both obesity and T2D.  相似文献   

15.
Y. Suwazono  A.   kesson  T. Alfv  n  L. J  rup  M. Vahter 《Biomarkers》2005,10(2):117-126
The aim was to assess how urinary creatinine is affected by age, gender, body size and meat intake, and to determine to what extent such factors might affect the creatinine adjustment of urinary cadmium. The study was based on three Swedish studies: (1) 67 non-smoking women aged 20-50 years (24-h urine samples); (2) 289 men and 434 women aged 16-81 years (spot urine samples); and (3) 98 men and 105 women aged 19-72 years (spot urine samples). The effects of age, body surface area (as an indicator of muscle mass), and meat intake on urinary creatinine and cadmium were analysed using multiple regression analyses. Gender- and age-related variations in urinary creatinine and cadmium adjusted for creatinine or specific gravity were compared by ANOVA or ANCOVA. In the multiple regression analyses, body surface area, gender, age and meat intake were the major determinants of urinary creatinine. Urinary cadmium adjusted for creatinine and specific gravity were also dependent on body size, gender and age. Urinary cadmium adjusted for creatinine was 15-92% higher in women or older individuals than in men or younger individuals. Women or older individuals had -3 to 79% higher urinary cadmium adjusted for specific gravity than men or younger individuals had, and such a difference between gender or age group was less obvious in specific gravity adjustment than in creatinine adjustment. Thus, urinary cadmium adjusted for creatinine is more affected by age, gender, body size and meat intake than is specific gravity adjustment. When comparing individuals or populations with large differences in muscle mass or meat intake, such effects can be especially important. In such studies, specific gravity adjustment seems to be more appropriate.  相似文献   

16.
The aim was to assess how urinary creatinine is affected by age, gender, body size and meat intake, and to determine to what extent such factors might affect the creatinine adjustment of urinary cadmium. The study was based on three Swedish studies: (1) 67 non-smoking women aged 20–50 years (24-h urine samples); (2) 289 men and 434 women aged 16–81 years (spot urine samples); and (3) 98 men and 105 women aged 19–72 years (spot urine samples). The effects of age, body surface area (as an indicator of muscle mass), and meat intake on urinary creatinine and cadmium were analysed using multiple regression analyses. Gender- and age-related variations in urinary creatinine and cadmium adjusted for creatinine or specific gravity were compared by ANOVA or ANCOVA. In the multiple regression analyses, body surface area, gender, age and meat intake were the major determinants of urinary creatinine. Urinary cadmium adjusted for creatinine and specific gravity were also dependent on body size, gender and age. Urinary cadmium adjusted for creatinine was 15–92% higher in women or older individuals than in men or younger individuals. Women or older individuals had –3 to 79% higher urinary cadmium adjusted for specific gravity than men or younger individuals had, and such a difference between gender or age group was less obvious in specific gravity adjustment than in creatinine adjustment. Thus, urinary cadmium adjusted for creatinine is more affected by age, gender, body size and meat intake than is specific gravity adjustment. When comparing individuals or populations with large differences in muscle mass or meat intake, such effects can be especially important. In such studies, specific gravity adjustment seems to be more appropriate.  相似文献   

17.
The aim was to assess how urinary creatinine is affected by age, gender, body size and meat intake, and to determine to what extent such factors might affect the creatinine adjustment of urinary cadmium. The study was based on three Swedish studies: (1) 67 non-smoking women aged 20-50 years (24-h urine samples); (2) 289 men and 434 women aged 16-81 years (spot urine samples); and (3) 98 men and 105 women aged 19-72 years (spot urine samples). The effects of age, body surface area (as an indicator of muscle mass), and meat intake on urinary creatinine and cadmium were analysed using multiple regression analyses. Gender- and age-related variations in urinary creatinine and cadmium adjusted for creatinine or specific gravity were compared by ANOVA or ANCOVA. In the multiple regression analyses, body surface area, gender, age and meat intake were the major determinants of urinary creatinine. Urinary cadmium adjusted for creatinine and specific gravity were also dependent on body size, gender and age. Urinary cadmium adjusted for creatinine was 15-92% higher in women or older individuals than in men or younger individuals. Women or older individuals had -3 to 79% higher urinary cadmium adjusted for specific gravity than men or younger individuals had, and such a difference between gender or age group was less obvious in specific gravity adjustment than in creatinine adjustment. Thus, urinary cadmium adjusted for creatinine is more affected by age, gender, body size and meat intake than is specific gravity adjustment. When comparing individuals or populations with large differences in muscle mass or meat intake, such effects can be especially important. In such studies, specific gravity adjustment seems to be more appropriate.  相似文献   

18.
A gas chromatography-mass spectrometry (GC-MS) method for the simultaneous measurement of isotopic enrichment and concentration of guanidinoacetate (GAA) and creatine in plasma sample for kinetic studies is reported. The method, based on preparation of the bis(trifluoromethyl)pyrimidine methyl ester derivatives of GAA and creatine, is robust and sensitive. The lowest measurable m1 and m3 enrichment for GAA and creatine, respectively, was 0.3%. The calibration curves for measurements of concentration were linear over ranges of 0.5 to 250 μM GAA and 2 to 500 μM for creatine. The method was reliable for inter- and intraassay precision, accuracy, and linearity. The technique was applied in a healthy adult to determine the in vivo fractional synthesis rate of creatine using primed-constant rate infusion of [1-13C]glycine. It was found that isotopic enrichment of GAA reached a plateau by 30 min of infusion of [1-13C]glycine, indicating either a small pool size or a rapid turnover rate (or both) of GAA. In contrast, the tracer appearance in creatine was slow (slope = 0.00097), suggesting a large pool size and a slow rate of synthesis of creatine. This method can be used to estimate the rate of synthesis of creatine in vivo in human and animal studies.  相似文献   

19.
The effect of Mg nutriture on Mg exchange and interorgan distribution was studied in adult rats ten days after a single I.P. dose of (25)Mg ( approximately 5 mg). First the effects of level of Mg intake (0.25, 0.05, or 0.01% Mg) on standard measures of Mg nutriture were studied for 62d to fully document the Mg status of the adult rats. The Mg-deficient diet led to a reduction in plasma, erythrocyte and urine Mg concentration but the only tissues affected were kidney and bone; no outward signs of deficiency were observed. At this point, the 4 remaining rats from each diet group received a single dose of (25)Mg and were killed 10d later. Unlike measures of total Mg content, Mg restriction was observed to significantly alter the distribution of isotope within the soft tissue compartment. The proportion of retained isotope accumulated by soft tissues other than skeletal muscle increased. Because this was not true for skeletal muscle, exogenous (25)Mg label was diverted to more metabolically active tissues during Mg restriction. The apparent Mg exchangeable pool (MgEP) size, determined by in vivo stable isotope dilution, reflected this difference in skeletal muscle (25)Mg accumulation; MgEP size was 39% lower in Mg restricted (0.01% Mg) compared to control (0.05% Mg) rats. The pool of exchangeable Mg in bone was also reduced by Mg restriction but, unlike the soft tissue compartment, the reduction in bone exchangeable Mg was quantitatively similar to the reduction in total Mg content.  相似文献   

20.
The interaction of exogenous carnitine with whole body carnitine homeostasis was characterized in the rat. Carnitine was administered in pharmacologic doses (0-33.3 mumols/100 g body weight) by bolus, intravenous injection, and plasma, urine, liver, skeletal muscle and heart content of carnitine and acylcarnitines quantitated over a 48 h period. Pre-injection urinary carnitine excretion was circadian as excretion rates were increased 2-fold during the lights-off cycle as compared with the lights-on cycle. Following carnitine administration, there was an increase in urinary total carnitine excretion which accounted for approx. 60% of the administered carnitine at doses above 8.3 mumols/100 g body weight. Urinary acylcarnitine excretion was increased following carnitine administration in a dose-dependent fashion. During the 24 h following administration of 16.7 mumols [14C]carnitine/100 g body weight, urinary carnitine specific activity averaged only 72 +/- 4% of the injection solution specific activity. This dilution of the [14C]carnitine specific activity suggests that endogenous carnitine contributed to the increased net urinary carnitine excretion following carnitine administration. 5 min after administration of 16.7 mumol carnitine/100 g body weight approx. 80% of the injected carnitine was in the extracellular fluid compartment and 5% in the liver. Plasma, liver and soleus total carnitine contents were increased 6 h after administration of 16.7 mumols carnitine/100 g body weight. 6 h post-administration, 37% of the dose was recovered in the urine, 12% remained in the extracellular compartment, 9% was in the liver and 22% was distributed in the skeletal muscle. In liver and plasma, short chain acylcarnitine content was increased 5 min and 6 h post injection as compared with controls. Plasma, liver, skeletal muscle and heart carnitine contents were not different from control levels 48 h after carnitine administration. The results demonstrate that single, bolus administration of carnitine is effective in increasing urinary acylcarnitine elimination. While liver carnitine content is doubled for at least 6 h following carnitine administration, skeletal muscle and heart carnitine pools are only modestly perturbed following a single intravenous carnitine dose. The dilution of [14C]carnitine specific activity in the urine of treated animals suggests that tissue-blood carnitine or acylcarnitine exchange systems contribute to overall carnitine homeostasis following carnitine administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号