首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compatible pollination of Brassica napus necessitates pollen hydration, pollen germination and growth of the pollen tube through the loosened walls of stigmatic papillar cells, whereas self-incompatible (SI) pollinations fail at one of these stages. Analyses of the early stages of pollination show that at high (but not low) relative humidities, both compatible and SI pollen hydrates, but SI germination is reduced and the rare pollen tubes generally fail to penetrate the papillar walls, although there is some wall loosening. Inside the papillae, both compatible and SI interactions may induce the formation of callose, but there is no evidence for a major accumulation of cytoplasm or secretory vesicles in the vicinity of the pollen tubes and neither microtubule nor F-actin patterns re-arrange in this zone. These observations indicate that the source of the wall-loosening enzymes is probably the pollen tube or pollen coat, and that the common cellular responses of plants to attempted invasions have become suppressed in the papilla–pollen tube interaction.  相似文献   

2.

Background and Aims

Sexual reproduction in angiosperms involves a network of signalling and interactions between pollen and pistil. To promote out-breeding, an additional layer of interactions, involving self-incompatibility (SI), is used to prevent self-fertilization. SI is generally controlled by the S-locus, and comprises allelic pollen and pistil S-determinants. This provides the basis of recognition, and consequent rejection, of incompatible pollen. In Papaver rhoeas, SI involves interaction of pistil PrsS and pollen PrpS, triggering a Ca2+-dependent signalling network. This results in rapid and distinctive alterations to both the actin and microtubule cytoskeleton being triggered in ‘self’ pollen. Some of these alterations are implicated in mediating programmed cell death, involving activation of several caspase-like proteases.

Scope

Here we review and discuss our current understanding of the cytoskeletal alterations induced in incompatible pollen during SI and their relationship with programmed cell death. We focus on data relating to the formation of F-actin punctate foci, which have, to date, not been well characterized. The identification of two actin-binding proteins that interact with these structures are reviewed. Using an approach that enriched for F-actin from SI-induced pollen tubes using affinity purification followed by mass spectrometry, further proteins were identified as putative interactors with the F-actin foci in an SI situation.

Key Results

Previously two important actin-binding proteins, CAP and ADF, had been identified whose localization altered with SI, both showing co-localization with the F-actin punctate foci based on immunolocalization studies. Further analysis has identified differences between proteins associated with F-actin from SI-induced pollen samples and those associated with F-actin in untreated pollen. This provides candidate proteins implicated in either the formation or stabilization of the punctate actin structures formed during SI.

Conclusions

This review brings together for the first time, our current understanding of proteins and events involved in SI-induced signalling to the actin cytoskeleton in incompatible Papaver pollen.  相似文献   

3.
Non‐heading Chinese cabbage (Brassica campestris L. ssp. chinensis Makino), an important vegetable crop in China, exhibits a typical sporophytic self‐incompatibility (SI) system. To better understand the mechanism of SI response and identify potential candidate proteins involved in the SI system of this vegetable crop, the proteomic approach was taken to identify differential accumulating pistil proteins. Pistils were collected at 0 h and 2 h after self‐pollination at anthesis in self‐incompatible and compatible lines of non‐heading Chinese cabbage, and total proteins were extracted and separated by two‐dimensional gel electrophoresis (2‐DE). A total of 25 protein spots that displayed differential abundance were identified by matrix‐assisted laser desorption/ionisation‐time of flight mass spectrometry (MALDI–TOF/TOF MS) and peptide mass fingerprinting (PMF). Among them, 22 protein spots were confidently established. The mRNA levels of the corresponding genes were detected by quantitative RT‐PCR. The 22 identified protein spots are involved in energy metabolism (four), protein biosynthesis (three), photosynthesis (six), stress response and defence (five), and protein degradation (four). Among these potential candidate proteins, UDP‐sugar pyrophosphorylase could be involved in sucrose degradation to influence pollen germination and growth. Glutathione S–transferases could be involved in pollen maturation, and affect pollen fertility. Senescence‐associated cysteine protease, which is related to programmed cell death, could be mainly related to self pollen recognition of non‐heading Chinese cabbage. The study will contribute to further investigations of molecular mechanism of sporophytic SI in Brassicaceae.  相似文献   

4.
Biochemical interactions between the pollen and the pistil allow plants fine control over fertilization. S-RNase-based pollen rejection is among the most widespread and best understood of these interactions. At least three plant families have S-RNase-based self-incompatibility (SI) systems, and S-RNases have also been implicated in interspecific pollen rejection. Although S-RNases determine the specificity of SI, other genes are required for the pollen rejection system to function. Progress is being made toward identifying these non-S-RNase factors. HT-protein, first identified as a non-S-RNase factor that was required for SI in Nicotiana alata, has now been implicated in other species as well. In addition, several pistil proteins bind to S-RNase in vitro. One hypothesis is that S-RNase forms a complex with these proteins in vivo that is the active form of S-RNase in pollen rejection.  相似文献   

5.
Many angiosperms use specific interactions between pollen and pistil proteins as "self" recognition and/or rejection mechanisms to prevent self-fertilization. Self-incompatibility (SI) is encoded by a multiallelic S locus, comprising pollen and pistil S-determinants. In Papaver rhoeas, cognate pistil and pollen S-determinants, PrpS, a pollen-expressed transmembrane protein, and PrsS, a pistil-expressed secreted protein, interact to trigger a Ca(2+)-dependent signaling network, resulting in inhibition of pollen tube growth, cytoskeletal alterations, and programmed cell death (PCD) in incompatible pollen. We introduced the PrpS gene into Arabidopsis thaliana, a self-compatible model plant. Exposing transgenic A. thaliana pollen to recombinant Papaver PrsS protein triggered remarkably similar responses to those observed in incompatible Papaver pollen: S-specific inhibition and hallmark features of Papaver SI. Our findings demonstrate that Papaver PrpS is functional in a species with no SI system that diverged ~140 million years ago. This suggests that the Papaver SI system uses cellular targets that are, perhaps, common to all eudicots and that endogenous signaling components can be recruited to elicit a response that most likely never operated in this species. This will be of interest to biologists interested in the evolution of signaling networks in higher plants.  相似文献   

6.
[In the Brassicaceae, targeted exocytosis to the stigmatic papillar plasma membrane under the compatible pollen grain is hypothesized to be essential for pollen hydration and pollen tube penetration. In contrast, polarized secretion is proposed to be inhibited in the stigmatic papillae during the rejection of self-incompatible pollen. Using transmission electron microscopy (TEM), we performed a detailed time-course of post-pollination events to view the cytological responses of the stigmatic papillae to compatible and self-incompatible pollinations. For compatible pollinations in Arabidopsis thaliana and Arabidopsis lyrata, vesicle secretion was observed at the stigmatic papillar plasma membrane under the pollen grain while Brassica napus stigmatic papillae appeared to use multivesicular bodies (MVBs) for secretion. Exo70A1, a component of the exocyst complex, has been previously implicated in the compatible pollen responses, and disruption of Exo70A1 in both A. thaliana and B. napus resulted in a loss of secretory vesicles/MVBs at the stigmatic papillar plasma membrane. Similarly, for self-incompatible pollinations, secretory vesicles/MVBs were absent from the stigmatic papillar plasma membrane in A. lyrata and B. napus; and furthermore, autophagy appeared to be induced to direct vesicles/MVBs to the vacuole for degradation. Thus, these findings support a model where the basal pollen recognition pathway in the stigmatic papilla promotes exocytosis to accept compatible pollen, and the basal pollen recognition pathway is overridden by the self-incompatibility pathway to prevent exocytosis and reject self-pollen.  相似文献   

7.
The self-incompatibility (SI) reaction in the Solanaceae involves molecular recognition of stylar haplotypes by pollen and is mediated by the S-locus from which a stylar-localized S-RNase and several pollen-localized F-box proteins are expressed. S-RNase activity has been previously shown to be essential for the SI reaction, leading to the hypothesis that pollen rejection in incompatible crosses is due to degradation of pollen RNA. We used pollen expressing the fluorescent marker GFP, driven by the LAT52 promoter, to monitor the accumulation of mRNA and protein in pollen after compatible and incompatible pollinations. We find that GFP mRNA and protein gradually accumulate in pollen tubes until at least 18-h post-pollination and, up to this time, are only slightly more abundant in compatible compared with incompatible crosses. However, between 18- and 24-h post-pollination, pollen tube GFP mRNA and protein levels show a dramatic increase in compatible crosses and either remain constant or decrease in incompatible crosses. In contrast to these molecular correlates, the growth rates of compatible and incompatible pollen tubes begin to differ after 6-h post-pollination. We interpret the changes in growth rate at 6-h post-pollination as the previously described transition from autotrophic to heterotrophic growth. Thus, while pollen rejection is generally considered to result from the cytotoxic effects of S-RNase activity, this time course reveals that a difference in the growth rate of compatible and incompatible pollen appears prior to any marked effects on at least some types of pollen RNA.  相似文献   

8.
Sexual reproduction in higher plants uses pollination, involving interactions between pollen and pistil. Self-incompatibility (SI) prevents self-fertilization, providing an important mechanism to promote outbreeding. SI is controlled by the S-locus; discrimination occurs between incompatible pollen, which is rejected, while compatible pollen can achieve fertilization. In Papaver rhoeas, S proteins encoded by the pistil part of the S-locus interact with incompatible pollen to effect rapid inhibition of tip growth. This self-incompatible interaction triggers a Ca(2+)-dependent signalling cascade. SI-specific events triggered in incompatible pollen include rapid depolymerization of the actin cytoskeleton; phosphorylation of soluble inorganic pyrophosphatases, and activation of a MAPK. It has recently been shown that programmed cell death (PCD) is triggered by SI. This provides a precise mechanism for the specific destruction of 'self' pollen. Recent data providing evidence for SI-induced caspase-3-like protease activity, and the involvement of actin depolymerization and MAPK activation in SI-mediated PCD will be discussed. These studies not only significantly advance our understanding of the mechanisms involved in SI, but also contribute to our understanding of functional links between signalling components and initiation of PCD in a plant cell. Recent data demonstrating SI-mediated modification of soluble inorganic pyrophosphatases are also described.  相似文献   

9.
In the Brassicaceae, compatible pollen–pistil interactions result in pollen adhesion to the stigma, while pollen grains from unrelated plant species are largely ignored. There can also be an additional layer of recognition to prevent self-fertilization, the self-incompatibility response, whereby self pollen grains are distinguished from nonself pollen grains and rejected. This pathway is activated in the stigma and involves the ARM repeat–containing 1 (ARC1) protein, an E3 ubiquitin ligase. In a screen for ARC1-interacting proteins, we have identified Brassica napus Exo70A1, a putative component of the exocyst complex that is known to regulate polarized secretion. We show through transgenic studies that loss of Exo70A1 in Brassica and Arabidopsis thaliana stigmas leads to the rejection of compatible pollen at the same stage as the self-incompatibility response. A red fluorescent protein:Exo70A1 fusion rescues this stigmatic defect in Arabidopsis and is found to be mobilized to the plasma membrane concomitant with flowers opening. By contrast, increased expression of Exo70A1 in self-incompatible Brassica partially overcomes the self pollen rejection response. Thus, our data show that the Exo70A1 protein functions at the intersection of two cellular pathways, where it is required in the stigma for the acceptance of compatible pollen in both Brassica and Arabidopsis and is negatively regulated by Brassica self-incompatibility.  相似文献   

10.
Background and Aims The integrity of actin filaments (F-actin) is essential for pollen-tube growth. In S-RNase-based self-incompatibility (SI), incompatible pollen tubes are inhibited in the style. Consequently, research efforts have focused on the alterations of pollen F-actin cytoskeleton during the SI response. However, so far, these studies were carried out in in vitro-grown pollen tubes. This study aimed to assess the timing of in vivo changes of pollen F-actin cytoskeleton taking place after compatible and incompatible pollinations in Nicotiana alata. To our knowledge, this is the first report of the in vivo F-actin alterations occurring during pollen rejection in the S-RNase-based SI system. Methods The F-actin cytoskeleton and the vacuolar endomembrane system were fluorescently labelled in compatibly and incompatibly pollinated pistils at different times after pollination. The alterations induced by the SI reaction in pollen tubes were visualized by confocal laser scanning microscopy. Key Results Early after pollination, about 70 % of both compatible and incompatible pollen tubes showed an organized pattern of F-actin cables along the main axis of the cell. While in compatible pollinations this percentage was unchanged until pollen tubes reached the ovary, pollen tubes of incompatible pollinations underwent gradual and progressive F-actin disorganization. Colocalization of the F-actin cytoskeleton and the vacuolar endomembrane system, where S-RNases are compartmentalized, revealed that by day 6 after incompatible pollination, when the pollen-tube growth was already arrested, about 80 % of pollen tubes showed disrupted F-actin but a similar percentage had intact vacuolar compartments. Conclusions The results indicate that during the SI response in Nicotiana, disruption of the F-actin cytoskeleton precedes vacuolar membrane breakdown. Thus, incompatible pollen tubes undergo a sequential disorganization process of major subcellular structures. Results also suggest that the large pool of S-RNases released from vacuoles acts late in pollen rejection, after significant subcellular changes in incompatible pollen tubes.  相似文献   

11.
Plants have mechanisms to recognize and reject pollen from other species. Although widespread, these mechanisms are less well understood than the self‐incompatibility (SI) mechanisms plants use to reject pollen from close relatives. Previous studies have shown that some interspecific reproductive barriers (IRBs) are related to SI in the Solanaceae. For example, the pistil SI proteins S‐RNase and HT protein function in a pistil‐side IRB that causes rejection of pollen from self‐compatible (SC) red/orange‐fruited species in the tomato clade. However, S‐RNase‐independent IRBs also clearly contribute to rejecting pollen from these species. We investigated S‐RNase‐independent rejection of Solanum lycopersicum pollen by SC Solanum pennellii LA0716, SC. Solanum habrochaites LA0407, and SC Solanum arcanum LA2157, which lack functional S‐RNase expression. We found that all three accessions express HT proteins, which previously had been known to function only in conjunction with S‐RNase, and then used RNAi to test whether they also function in S‐RNase‐independent pollen rejection. Suppressing HT expression in SC S. pennellii LA0716 allows S. lycopersicum pollen tubes to penetrate farther into the pistil in HT suppressed plants, but not to reach the ovary. In contrast, suppressing HT expression in SC. Solanum habrochaites LA0407 and in SC S. arcanum LA2157 allows S. lycopersicum pollen tubes to penetrate to the ovary and produce hybrids that, otherwise, would be difficult to obtain. Thus, HT proteins are implicated in both S‐RNase‐dependent and S‐RNase‐independent pollen rejection. The results support the view that overall compatibility results from multiple pollen–pistil interactions with additive effects.  相似文献   

12.
Summary It is shown that in vitro pollination can be used in future studies of the time course of pollen-tube development and analysis of self-incompatibility in sugar beet, Beta vulgaris L. Upon selfng a self-incompatible genotype showed the same incompatibility response after both in vitro and in vivo pollinations. No differences between cross-compatible and self-compatible pollentube growth were observed. The pollen-tube rejection occurred whether or not the pollen was prehydrated. RNA staining with Acridine Orange showed that there was less cellular RNA in the pistil tissue from in vitro-pollinated flowers. Nevertheless, pollen-tube growth and the self-incompatibility response were similar after in vivo and in vitro pollinations.  相似文献   

13.
McClure BA  Franklin-Tong V 《Planta》2006,224(2):233-245
Self-incompatibility (SI) prevents the production of “self” seed and inbreeding by providing a recognition and rejection system for “self,” or genetically identical, pollen. Studies of gametophytic SI (GSI) species at a molecular level have identified two completely different S-genes and SI mechanisms. One GSI mechanism, which is found in the Solanaceae, Rosaceae and Scrophulariaceae, has S-RNase as the pistil S-component and an F-box protein as the pollen S-component. However, non-S-locus factors are also required. In an incompatible situation, the S-RNases degrade pollen RNA, thereby preventing pollen tube growth. Here, in the light of recent evidence, we examine alternative models for how compatible pollen escapes this cytotoxic activity. The other GSI mechanism, so far found only in the Papaveraceae, has a small secreted peptide, the S-protein, as its pistil S-component. The pollen S-component remains elusive, but it is thought to be a transmembrane receptor, as interaction of the S-protein with incompatible pollen triggers a signaling network, resulting in rapid actin depolymerization and pollen tube inhibition and programmed cell death (PCD). Here, we present an overview of what is currently known about the mechanisms involved in regulating pollen tube inhibition in these two GSI systems.  相似文献   

14.
BACKGROUND AND AIMS: Unilateral incompatibility (UI) occurs when pollinations between species are successful in one direction but not in the other. Self-incompatible (SI) species frequently show UI with genetically related, self-compatible (SC) species, as pollen of SI species is compatible on the SC pistil, but not vice versa. Many examples of unilateral incompatibility, and all those which have been studied most intensively, are found in the Solanaceae, particularly Lycopersicon, Solanum, Nicotiana and Petunia. The genus Capsicum is evolutionarily somewhat distant from Lycopersicon and Solanum and even further removed from Nicotiana and Petunia. Unilateral incompatibility has also been reported in Capsicum; however, this is the first comprehensive study of crosses between all readily available species in the genus. METHODS: All readily available (wild and domesticated) species in the genus are used as plant material, including the three genera from the Capsicum pubescens complex plus eight other species. Pollinations were made on pot-grown plants in a glasshouse. The number of pistils pollinated per cross varied (from five to 40 pistils per plant), depending on the numbers of flowers available. Pistils were collected 24 h after pollination and fixed for 3-24 h. After staining, pistils were mounted in a drop of stain, squashed gently under a cover slip and examined microscopically under ultra-violet light for pollen tube growth. KEY RESULTS: Unilateral incompatibility is confirmed in the C. pubescens complex. Its direction conforms to that predominant in the Solanaceae and other families, i.e. pistils of self-incompatible species, or self-compatible taxa closely related to self-incompatible species, inhibit pollen tubes of self-compatible species. CONCLUSIONS: Unilateral incompatibility in Capsicum does not seem to have arisen to prevent introgression of self-compatibility into self-incompatible taxa, but as a by-product of divergence of the C. pubescens complex from the remainder of the genus.  相似文献   

15.
ARC1 is a novel U-box protein required in the Brassica pistil for the rejection of self-incompatible pollen; it functions downstream of the S receptor kinase (SRK). Here, we show that ARC1 has E3 ubiquitin ligase activity and contains several motifs that influence its subcellular localization. ARC1 can shuttle between the nucleus, cytosol, and proteasome/COP9 signalosome (CSN) when expressed in tobacco BY-2 suspension-cultured cells. However, ARC1 localization to the proteasome/CSN occurs only in the presence of an active SRK. In the pistil, ubiquitinated protein levels increase specifically with incompatible pollinations, but they do not change in ARC1 antisense-suppressed pistils. In addition, inhibition of the proteasomal proteolytic activity disrupts the self-incompatibility response. We propose that ARC1 promotes the ubiquitination and proteasomal degradation of compatibility factors in the pistil, which in turn leads to pollen rejection.  相似文献   

16.
Self-pollen rejection is an important reproductive regulator in flowering plants, and several different intercellular signaling systems have evolved to elicit this response. In the Brassicaceae, the self-incompatibility system is mediated by the pollen S-locus Cys-Rich/S-locus Protein11 (SCR/SP11) ligand and the pistil S Receptor Kinase (SRK). While the SCR/SP11-SRK recognition system has been identified in several species across the Brassicaceae, less is known about the conservation of the SRK-activated cellular responses in the stigma, following self-pollen contact. The ARM Repeat Containing1 (ARC1) E3 ubiquitin ligase functions downstream of SRK for the self-incompatibility response in Brassica, but it has been suggested that ARC1 is not required in Arabidopsis species. Here, we surveyed the presence of ARC1 orthologs in several recently sequenced genomes from Brassicaceae species that had diversified ∼20 to 40 million years ago. Surprisingly, the ARC1 gene was deleted in several species that had lost the self-incompatibility trait, suggesting that ARC1 may lose functionality in the transition to self-mating. To test the requirement of ARC1 in a self-incompatible Arabidopsis species, transgenic ARC1 RNA interference Arabidopsis lyrata plants were generated, and they exhibited reduced self-incompatibility responses resulting in successful fertilization. Thus, this study demonstrates a conserved role for ARC1 in the self-pollen rejection response within the Brassicaceae.  相似文献   

17.
Unilateral pollen-pistil incompatibility within the Brassicaceae has been re-examined in a series of interspecific and intergeneric crosses using 13 self-compatible (SC, Sc) species and 12 self-incompatible (SI) species from ten tribes. SC x SC crosses were usually compatible, SI x SC crosses showed unilateral incompatibility, while SI x SI crosses were often incompatible or unilaterally incompatible. Unilateral incompatibility (UI) is shown to be overcome by bud pollination or treating stigmas with cycloheximide — features in common with self-incompatibility. Treating stigmas with pronase prevents pollen tubes from penetrating the stigma in normally compatible intra-and interspecific pollinations. The results presented show that the presence of an incompatibility system is important in predicting the outcome of interspecific and intergeneric crosses and, combined with the physiological similarities between UI and SI, would suggest an involvement of the S-locus in UI.  相似文献   

18.
Pollination of pummelo (Citrus grandis L. Osbeck) pistils has been studied in planta by adding compatible and self-incompatible (SI) pollen to the stigma surface. The pollen germination has been monitored inside the pistil by fluorescent microscopy showing SI altered morphologies with irregular depositions of callose in the tube walls, and heavy callose depositions in enlarged tips. The polyamine (PA) content as free, perchloric acid (PCA)-soluble and -insoluble fractions and transglutaminase (TGase) activity have been analyzed in order to deepen their possible involvement in the progamic phase of plant reproduction. The conjugated PAs in PCA-soluble fraction were definitely higher than the free and the PCA-insoluble forms, in both compatible and SI pollinated pistils. In pistils, pollination caused an early decrease of free PAs and increase of the bound forms. The SI pollination, showed highest values of PCA-soluble and -insoluble PAs with a maximum in concomitance with the pollen tube arrest. As TGase mediates some of the effects of PAs by covalently binding them to proteins, its activity, never checked before in Citrus, was examined with two different assays. In addition, the presence of glutamyl-PAs confirmed the enzyme assay data and excluded the possibility of a misinterpretation. The SI pollination caused an increase in TGase activity, whereas the compatible pollination caused its decrease. Similarly to bound PAs, the glutamyl-PAs and the enzyme activity peaked in the SI pollinated pistils in concomitance with the observed block of the pollen tube growth, suggesting an involvement of TGase in SI response.  相似文献   

19.
Expression of an S receptor kinase (SRK910) transgene in the self-compatible Brassica napus cv. Westar conferred on the transgenic pistil the ability to reject pollen from the self-incompatible Brassica napus W1 line, which carries the S910 allele. In one of the SRK transgenic lines, 1C, virtually no seeds were produced when the transgenic pistils were pollinated with W1 pollen (Mean number of seeds per pod = 1.22). This response was specific to the W1 pollen since pollen from a different self-incompatible Brassica napus line (T2) and self-pollinations were fully compatible. Westar plants expressing an S locus glycoprotein transgene (SLG910) did not show any self-incompatibility response towards W1 pollen. Transgenic Westar plants resulting from crosses between the 1C SRK transgenic line and three SLG910 transgenic lines were also tested for rejection of W1 pollen. The additional expression of the SLG910 transgene in the SRK910 transgenic plants did not cause any significant further reduction in seed production (Mean seeds/pod = 1.04) or have any detectable effects on the number of pollen grains that adhered to the pistil. Thus, while the allele-specific SLG gene was previously reported to have an enhancing effect on the self-incompatibility response, no evidence for such a role was found in this study.  相似文献   

20.
In self-incompatible (SI) plants, the S locus acts to prevent growth of self-pollen and thus promotes outcrossing within the species. Interspecific crosses between SI and self-compatible (SC) species often show unilateral incompatibility that follows the SI x SC rule: SI species reject pollen from SC species, but the reciprocal crosses are usually compatible. The general validity of the SI x SC rule suggests a link between SI and interspecific pollen rejection; however, this link has been questioned because of a number of exceptions to the rule. To clarify the role of the S locus in interspecific pollen rejection, we transformed several Nicotiana species and hybrids with genes encoding SA2 or SC10 RNase from SI N. alata. Compatibility phenotypes in the transgenic plants were tested using pollen from three SC species showing unilateral incompatibility with N. alata. S RNase was implicated in rejecting pollen from all three species. Rejection of N. plumbaginifolia pollen was similar to S allele-specific pollen rejection, showing a requirement for both S RNase and other genetic factors from N. alata. In contrast, S RNase-dependent rejection of N. glutinosa and N. tabacum pollen proceeded without these additional factors. N. alata also rejects pollen from the latter two species through an S RNase-independent mechanism. Our results implicate the S locus in all three systems, but it is clear that multiple mechanisms contribute to interspecific pollen rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号