首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Placental malfunction induces pregnancy disorders which contribute to life-threatening complications for both the mother and the fetus. Identification and characterization of placental multi-protein complexes is an important step to integratedly understand the protein-protein interaction networks in placenta which determine placental function. In this study, blue native/sodium dodecyl sulfate polyacrylamide gel electrophoresis (BN/SDS-PAGE) and Liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to screen the multi-protein complexes in placenta. 733 unique proteins and 34 known and novel heterooligomeric multi-protein complexes including mitochondrial respiratory chain complexes, integrin complexes, proteasome complexes, histone complex, and heat shock protein complexes were identified. A novel protein complex, which involves clathrin and small conductance calcium-activated potassium (SK) channel protein 2, was identified and validated by antibody based gel shift assay, co-immunoprecipitation and immunofluorescence staining. These results suggest that BN/SDS-PAGE, when integrated with LC-MS/MS, is a very powerful and versatile tool for the investigation of placental protein complexes. This work paves the way for deeper functional characterization of the placental protein complexes associated with pregnancy disorders.  相似文献   

2.
3.
Heterotrimeric G-proteins localized in the plasma membrane convey the signals from G-protein-coupled receptors (GPCRs) to different effectors. At least some types of G-protein α subunits have been shown to be partly released from plasma membranes and to move into the cytosol after receptor activation by the agonists. However, the mechanism underlying subcellular redistribution of trimeric G-proteins is not well understood and no definitive conclusions have been reached regarding the translocation of Gα subunits between membranes and cytosol. Here we used subcellular fractionation and clear-native polyacrylamide gel electrophoresis to identify molecular complexes of G(q/11)α protein and to determine their localization in isolated fractions and stability in na?ve and thyrotropin-releasing hormone (TRH)-treated HEK293 cells expressing high levels of TRH receptor and G(11)α protein. We identified two high-molecular-weight complexes of 300 and 140 kDa in size comprising the G(q/11) protein, which were found to be membrane-bound. Both of these complexes dissociated after prolonged treatment with TRH. Still other G(q/11)α protein complexes of lower molecular weight were determined in the cytosol. These 70 kDa protein complexes were barely detectable under control conditions but their levels markedly increased after prolonged (4-16 h) hormone treatment. These results support the notion that a portion of G(q/11)α can undergo translocation from the membrane fraction into soluble fraction after a long-term activation of TRH receptor. At the same time, these findings indicate that the redistribution of G(q/11)α is brought about by the dissociation of high-molecular-weight complexes and concomitant formation of low-molecular-weight complexes containing the G(q/11)α protein.  相似文献   

4.
Human embryonic stem cells (hESCs) have great potential for use in developmental biology studies, functional genomics applications, drug screening, and regenerative medicine. A detailed understanding of the molecular mechanisms that are responsible for maintaining the undifferentiated and pluripotent nature of hESCs is essential for their effective therapeutic application. It has become evident that many complex cellular processes are carried out by assemblies of protein molecules (protein complexes). Blue native polyacrylamide gel electrophoresis (BN-PAGE) has been used to separate protein complexes from whole cell lysates. Using BN-PAGE, we resolved cytoplasmic and membrane-associated complexes from hESCs and characterised their composition, stoichiometry, and dynamics by denaturing SDS-PAGE. The reliability of the fractionation was examined by western blot analysis of membrane and cytosolic markers. MALDI TOF/TOF mass spectrometry identified 119 cytosolic and 69 membrane proteins from the BN-PAGE proteome maps. Potential protein complexes were validated by computational prediction of possible protein-protein interactions using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. Based on BN-PAGE gels and validation by databases, 82 heteromultimeric and 47 homomultimeric protein complexes have been found in hESCs. Resolving some of the protein complexes provided insight into the function of previously uncharacterised complexes in hESCs.  相似文献   

5.
Regulators of G protein signaling (RGS) proteins that contain DEP (disheveled, EGL-10, pleckstrin) and GGL (G protein gamma subunit-like) domains form a subfamily that includes the mammalian RGS proteins RGS6, RGS7, RGS9, and RGS11. We describe the cloning of RGS6 cDNA, the specificity of interaction of RGS6 and RGS7 with G protein beta subunits, and certain biochemical properties of RGS6/beta5 and RGS7/beta5 complexes. After expression in Sf9 cells, complexes of both RGS6 and RGS7 with the Gbeta5 subunit (but not Gbetas 1-4) are found in the cytosol. When purified, these complexes are similar to RGS11/beta5 in that they act as GTPase-activating proteins specifically toward Galpha(o). Unlike conventional G(betagamma) complexes, RGS6/beta5 and RGS7/beta5 do not form heterotrimeric complexes with either Galpha(o)-GDP or Galpha(q)-GDP. Neither RGS6/beta5 nor RGS7/beta5 altered the activity of adenylyl cyclases types I, II, or V, nor were they able to activate either phospholipase C-beta1 or -beta2. However, the RGS/beta5 complexes inhibited beta(1)gamma(2)-mediated activation of phospholipase C-beta2. RGS/beta5 complexes may contribute to the selectivity of signal transduction initiated by receptors coupled to G(i) and G(o) by binding to phospholipase C and stimulating the GTPase activity of Galpha(o).  相似文献   

6.
A classical approach, protein separation by two-dimensional blue native/sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was combined with tandem mass spectrometry and up-to-date computer technology to characterize the mitochondrial "protein complex proteome" of Arabidopsis (Arabidopsis thaliana) in so far unrivaled depth. We further developed the novel GelMap software package to annotate and evaluate two-dimensional blue native/sodium dodecyl sulfate gels. The software allows (1) annotation of proteins according to functional and structural correlations (e.g. subunits of a distinct protein complex), (2) assignment of comprehensive protein identification lists to individual gel spots, and thereby (3) selective display of protein complexes of low abundance. In total, 471 distinct proteins were identified by mass spectrometry, several of which form part of at least 35 different mitochondrial protein complexes. To our knowledge, numerous protein complexes were described for the first time (e.g. complexes including pentatricopeptide repeat proteins involved in nucleic acid metabolism). Discovery of further protein complexes within our data set is open to everybody via the public GelMap portal at www.gelmap.de/arabidopsis_mito.  相似文献   

7.
Analysis of protein complexes provides insights into how the ensemble of expressed proteome is organized into functional units. While there have been advances in techniques for proteome‐wide profiling of cytoplasmic protein complexes, information about human nuclear protein complexes are very limited. To close this gap, we combined native size exclusion chromatography (SEC) with label‐free quantitative MS profiling to characterize hundreds of nuclear protein complexes isolated from human glioblastoma multiforme T98G cells. We identified 1794 proteins that overlapped between two biological replicates of which 1244 proteins were characterized as existing within stably associated putative complexes. co‐IP experiments confirmed the interaction of PARP1 with Ku70/Ku80 proteins and HDAC1 (histone deacetylase complex 1) and CHD4. HDAC1/2 also co‐migrated with various SIN3A and nucleosome remodeling and deacetylase components in SEC fractionation including SIN3A, SAP30, RBBP4, RBBP7, and NCOR1. Co‐elution of HDAC1/2/3 with both the KDM1A and RCOR1 further confirmed that these proteins are integral components of human deacetylase complexes. Our approach also demonstrated the ability to identify potential moonlighting complexes and novel complexes containing uncharacterized proteins. Overall, the results demonstrated the utility of SEC fractionation and LC–MS analysis for system‐wide profiling of proteins to predict the existence of distinct forms of nuclear protein complexes.  相似文献   

8.
Klodmann J  Lewejohann D  Braun HP 《Proteomics》2011,11(9):1834-1839
SDS normally is strictly avoided during Blue native (BN) PAGE because it leads to disassembly of protein complexes and unfolding of proteins. Here, we report a modified BN-PAGE procedure, which is based on low-SDS treatment of biological samples prior to native gel electrophoresis. Using mitochondrial OXPHOS complexes from Arabidopsis as a model system, low SDS concentrations are shown to partially dissect protein complexes in a very defined and reproducible way. If combined with 2-D BN/SDS-PAGE, generated subcomplexes and their subunits can be systematically investigated, allowing insights into the internal architecture of protein complexes. Furthermore, a 3-D BN/low-SDS BN/SDS-PAGE system is introduced to facilitate structural analysis of individual protein complexes without their previous purification.  相似文献   

9.
Bimolecular fluorescence complementation (BiFC) is an approach used to analyze protein–protein interaction in vivo, in which non-fluorescent N-terminal and C-terminal fragments of a fluorescent protein are reconstituted to emit fluorescence only when they are brought together by interaction of two proteins to fuse both fragments. A method for simultaneous visualization of two protein complexes by multicolor BiFC with fragments from green fluorescent protein (GFP) and its variants such as cyan and yellow fluorescent proteins (CFP and YFP) was recently reported in animal cells. In this paper we describe a new strategy for simultaneous visualization of two protein complexes in plant cells using the multicolor BiFC with fragments from CFP, GFP, YFP and a red fluorescent protein variant (DsRed-Monomer). We identified nine different BiFC complexes using fragments of CFP, GFP and YFP, and one BiFC complex using fragments of DsRed-Monomer. Fluorescence complementation did not occur by combinations between fragments of GFP variants and DsRed-Monomer. Based on these findings, we achieved simultaneous visualization of two protein complexes in a single plant cell using two colored fluorescent complementation pairs (cyan/red, green/red or yellow/red).  相似文献   

10.
Affinity purification of protein complexes followed by identification using liquid chromatography/mass spectrometry (LC-MS/MS) is a robust method to study the fundamental process of protein interaction. Although affinity isolation reduces the complexity of the sample, fractionation prior to LC-MS/MS analysis is still necessary to maximize protein coverage. In this study, we compared the protein coverage obtained via LC-MS/MS analysis of protein complexes prefractionated using two commonly employed methods, SDS-PAGE and strong cation exchange chromatography (SCX). The two complexes analyzed focused on the nuclear proteins Bmi-1 and GATA3 that were expressed within the cells at low and high levels, respectively. Prefractionation of the complexes at the peptide level using SCX consistently resulted in the identification of approximately 3-fold more proteins compared to separation at the protein level using SDS-PAGE. The increase in the number of identified proteins was especially pronounced for the Bmi-1 complex, where the target protein was expressed at a low level. The data show that prefractionation of affinity isolated protein complexes using SCX prior to LC-MS/MS analysis significantly increases the number of identified proteins and individual protein coverage, particularly for target proteins expressed at low levels.  相似文献   

11.
Among bacterial cell envelopes, the Borrelia burgdorferi outer membrane (OM) is structurally unique in that the identities of many protein complexes remain unknown; however, their characterization is the first step toward our understanding of membrane protein interactions and potential functions. Here, we used two-dimensional blue native/SDS-PAGE/mass spectrometric analysis for a global characterization of protein-protein interactions as well as to identify protein complexes in OM vesicles isolated from multiple infectious sensu stricto isolates of B. burgdorferi. Although we uncovered the existence of at least 10 distinct OM complexes harboring several unique subunits, the complexome is dominated by the frequent occurrence of a limited diversity of membrane proteins, most notably P13, outer surface protein (Osp) A, -B, -C, and -D and Lp6.6. The occurrence of these complexes and specificity of subunit interaction were further supported by independent two-dimensional immunoblotting and coimmunoprecipitation assays as well as by mutagenesis studies, where targeted depletion of a subunit member (P66) selectively abolished a specific complex. Although a comparable profile of the OM complexome was detected in two major infectious isolates, such as B31 and 297, certain complexes are likely to occur in an isolate-specific manner. Further assessment of protein complexes in multiple Osp-deficient isolates showed loss of several protein complexes but revealed the existence of additional complex/subunits that are undetectable in wild-type cells. Together, these observations uncovered borrelial antigens involved in membrane protein interactions. The study also suggests that the assembly process of OM complexes is specific and that the core or stabilizing subunits vary between complexes. Further characterization of these protein complexes including elucidation of their biological significance may shed new light on the mechanism of pathogen persistence and the development of preventative measures against the infection.  相似文献   

12.
We previously reported new zinc complexes of allixin [bis(allixinato)zinc] and its derivative bis(thioallixin-N-methyl)zinc that demonstrated excellent antidiabetic activity in type 2 diabetic mellitus KKA(y) mice. However, the molecular mechanism of these complexes is not fully understood. Thus, we attempted to reveal the intracellular mechanism of these complexes in 3T3-L1 adipocytes. Both zinc complexes induced Akt/protein kinase B (Akt/PKB) phosphorylation. The phosphorylation of Akt/PKB enhanced glucose transporter 4 translocation to the plasma membrane; this in turn enhanced the glucose utilization in a dose- and time-dependent manner. Glucose utilization by the complexes depended on the intracellular zinc concentration. Moreover, zinc complexes suppressed the cyclic AMP dependent protein kinase mediated phosphorylation of hormone-sensitive lipase (HSL), leading to the inhibition of free fatty acid release from the 3T3-L1 adipocytes. Such responses were inhibited by wortmannin, suggesting that the suppression of HSL by zinc complexes was dependent in the phosphoinositide 3-kinase-Akt/PKB signaling cascade. On the basis of these results, we proposed that both zinc complexes activated the Akt/PKB-mediated insulin-signaling pathway and improved both glucose utilization and lipid metabolism.  相似文献   

13.
A systematic strategy was developed for the proteomic analysis of wheat chloroplast protein complexes. First, comprehensive centrifugation methods were utilized for the exhaustive isolation of thylakoid, envelope, and stromal fractions. Second, 1% n-dodecyl-β-D-maltoside was selected from a series of detergents as the optimal detergent to dissolve protein complexes effectively from membranes. Then, blue native polyacrylamide gel electrophoresis (BN-PAGE) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were improved to separate and analyze the protein complexes. By this systematic strategy, envelopes, thylakoids, and stromata were enriched effectively from chloroplasts in the same process, and more than 18 complexes were obtained simultaneously by BN-PAGE. Finally, thylakoid protein complexes were further analyzed by BN/SDS-PAGE, and nine complex bands and 40 protein spots were observed on BN-PAGE and SDS-PAGE respectively. Our results indicate that this new strategy can be used efficiently to analyze the proteome of chloroplast protein complexes and can be applied conveniently to the analysis of other subcellular protein complexes.  相似文献   

14.
In most of homeodomain–DNA complexes, glutamine or lysine is present at 50th position and interacts with 5th and 6th nucleotide of core recognition region. Molecular dynamics simulations of Msx-1–DNA complex (Q50-TG) and its variant complexes, that is specific (Q50K-CC), nonspecific (Q50-CC) having mutation in DNA and (Q50K-TG) in protein, have been carried out. Analysis of protein–DNA interactions and structure of DNA in specific and nonspecific complexes show that amino acid residues use sequence-dependent shape of DNA to interact. The binding free energies of all four complexes were analysed to define role of amino acid residue at 50th position in terms of binding strength considering the variation in DNA on stability of protein–DNA complexes. The order of stability of protein–DNA complexes shows that specific complexes are more stable than nonspecific ones. Decomposition analysis shows that N-terminal amino acid residues have been found to contribute maximally in binding free energy of protein–DNA complexes. Among specific protein–DNA complexes, K50 contributes more as compared to Q50 towards binding free energy in respective complexes. The sequence dependence of local conformation of DNA enables Q50/Q50K to make hydrogen bond with nucleotide(s) of DNA. The changes in amino acid sequence of protein are accommodated and stabilized around TAAT core region of DNA having variation in nucleotides.  相似文献   

15.
With the characterization of the total genomes of Arabidopsis thaliana and Oryza sativa , several putative plasma membrane components have been identified. However, a lack of knowledge at the protein level, especially for hydrophobic proteins, have hampered analyses of physiological changes. To address whether protein complexes may be present in the native membrane, we subjected plasma membranes isolated from Spinacia oleracea leaves to blue-native polyacrylamide gel electrophoresis (BN-PAGE). BN-PAGE is well established in the separation of functional membrane protein complexes from mitochondria and chloroplasts, but a resolved protein complex pattern from PM of eukaryotic cells has previously not been reported. Using this method, protein complexes from Spinacia oleracea PM could be efficiently solubilized and separated, including the highly hydrophobic aquaporin (apparent molecular mass 230 kDa), a putative tetramer of H+-ATPase, and several less abundant complexes with apparent masses around or above 750 kDa. After denaturation and separation of the complexes into their subunits in a second dimension (SDS-PAGE), several of the complexes were identified as hydrophobic membrane proteins. Large amounts of protein (up to 1 mg) can be resolved in each lane, which suggests that the method could be used to study also low-abundance protein complexes, e.g. under different physiological conditions.  相似文献   

16.
While protein interaction studies and protein network modeling come to the forefront, the isolation and identification of protein complexes in a cellular context remains a major challenge for plant science. To this end, a nondenaturing extraction procedure was optimized for plant whole cell matrices and the combined use of gel filtration and BN‐PAGE for the separation of protein complexes was studied. Hyphenation to denaturing electrophoresis and mass spectrometric analysis allows for the simultaneous identification of multiple (previously unidentified) protein interactions in single samples. The reliability and efficacy of the technique was confirmed (i) by the identification of well‐studied plant protein complexes, (ii) by the presence of nonplant interologs for several of the novel complexes (iii) by presenting physical evidence of previously hypothetical plant protein interactions and (iv) by the confirmation of found interactions using co‐IP. Furthermore practical issues concerning the use of this 2‐D BN/SDS‐PAGE display method for the analysis of protein–protein interactions are discussed.  相似文献   

17.
Protein complexes are key entities to perform cellular functions. Human diseases are also revealed to associate with some specific human protein complexes. In fact, human protein complexes are widely used for protein function annotation, inference of human protein interactome, disease gene prediction, and so on. Therefore, it is highly desired to build an up-to-date catalogue of human complexes to support the research in these applications. Protein complexes from different databases are as expected to be highly redundant. In this paper, we designed a set of concise operations to compile these redundant human complexes and built a comprehensive catalogue called CHPC2012 (Catalogue of Human Protein Complexes). CHPC2012 achieves a higher coverage for proteins and protein complexes than those individual databases. It is also verified to be a set of complexes with high quality as its co-complex protein associations have a high overlap with protein-protein interactions (PPI) in various existing PPI databases. We demonstrated two distinct applications of CHPC2012, that is, investigating the relationship between protein complexes and drug-related systems and evaluating the quality of predicted protein complexes. In particular, CHPC2012 provides more insights into drug development. For instance, proteins involved in multiple complexes (the overlapping proteins) are potential drug targets; the drug-complex network is utilized to investigate multi-target drugs and drug-drug interactions; and the disease-specific complex-drug networks will provide new clues for drug repositioning. With this up-to-date reference set of human protein complexes, we believe that the CHPC2012 catalogue is able to enhance the studies for protein interactions, protein functions, human diseases, drugs, and related fields of research. CHPC2012 complexes can be downloaded from http://www1.i2r.a-star.edu.sg/xlli/CHPC2012/CHPC2012.htm.  相似文献   

18.
The PufX protein, encoded by the pufX gene of Rhodobacter sphaeroides, plays a key role in the organization and function of the core antenna (LH1)-reaction centre (RC) complex, which collects photons and triggers primary photochemical reactions. We synthesized a PufX/maltose-binding protein (MBP) fusion protein to study the effect of the PufX protein on the reconstitution of B820 subunit-type and LH1-type complexes. The fusion protein was synthesized using an Escherichia coli expression system and purified by affinity chromatography. Reconstitution experiments demonstrated that the MBP-PufX protein destabilizes the subunit-type complex (20°C), consistent with previous reports. Interestingly, however, the preformed LH1-type complex was stable in the presence of MBP-PufX. The MBP-PufX protein did not influence the preformed LH1-type complexes (4°C). The LH1-type complex containing MBP-PufX showed a unique temperature-dependent structural transformation that was irreversible. The predominant form of the complex at 4°C was the LH1-type. When shifted to 20°C, subunit-type complexes became predominant. Upon subsequent cooling back to 4°C, instead of re-forming the LH1-type complexes, the predominant form remained the subunit-type complexes. In contrast, reversible transformation of LH1 (4°C) and subunit-type complexes (20°C) occurs in the absence of PufX. These results are consistent with the suggestion that MBP-PufX interacts with the LH1α- polypeptide in the subunit (α/β)-type complex (at 20°C), preventing oligomerization of the subunit to form LH1-type complexes.  相似文献   

19.
To understand physiological processes, insight into protein complexes is very important. Through a combination of blue native gel electrophoresis and LC-MS/MS, we were able to isolate protein complexes and identify their potential subunits from Nicotiana tabacum cv. Bright Yellow-2. For this purpose, a bioanalytical approach was used that works without a priori knowledge of the interacting proteins. Different clustering methods (e.g., k-means and hierarchical clustering) and a biclustering approach were evaluated according to their ability to group proteins by their migration profile and to correlate the proteins to a specific complex. The biclustering approach was identified as a very powerful tool for the exploration of protein complexes of whole cell lysates since it allows for the promiscuous nature of proteins. Furthermore, it searches for associations between proteins that co-occur frequently throughout the BN gel, which increases the confidence of the putative associations between co-migrating proteins. The statistical significance and biological relevance of the profile clusters were verified using functional gene ontology annotation. The proof of concept for identifying protein complexes by our BN PAGE/LC-MS/MS approach is provided through the analysis of known protein complexes. Both well characterized long-lived protein complexes as well as potential temporary sequential multi-enzyme complexes were characterized.  相似文献   

20.
In the study of protein complexes, is there a computational method for inferring which combinations of proteins in an organism are likely to form a crystallizable complex? Here we attempt to answer this question, using the Protein Data Bank (PDB) to assess the usefulness of inferred functional protein linkages from the Prolinks database. We find that of the 242 nonredundant prokaryotic protein complexes shared between the current PDB and Prolinks, 44% (107/242) contain proteins linked at high confidence by one or more methods of computed functional linkages. Similarly, high-confidence linkages detect 47% of known Escherichia coli protein complexes, with 45% accuracy. Together these findings suggest that functional linkages will be useful in defining protein complexes for structural studies, including for structural genomics. We offer a database of inferred linkages corresponding to likely protein complexes for some 629,952 pairs of proteins in 154 prokaryotes and archaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号