首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Streptomycetes grow by cell wall extension at hyphal tips. The molecular basis for such polar growth in prokaryotes is largely unknown. It is reported here that DivIVASC, the Streptomyces coelicolor homologue of the Bacillus subtilis protein DivIVA, is essential and directly involved in hyphal tip growth and morphogenesis. A DivIVASC-EGFP hybrid was distinctively localized to hyphal tips and lateral branches. Reduction of divIVASC expression to about 10% of the normal level produced a phenotype strikingly similar to that of many tip growth mutants in fungi, including irregular curly hyphae and apical branching. Overexpression of the gene dramatically perturbed determination of cell shape at the growing tips. Furthermore, staining of nascent peptidoglycan with a fluorescent vancomycin conjugate revealed that induction of overexpression in normal hyphae disturbed tip growth, and gave rise to several new sites of cell wall assembly, effectively causing hyperbranching. The results show that DivIVASC is a novel bacterial morphogene, and it is localized at or very close to the apical sites of peptidoglycan assembly in Streptomyces hyphae.  相似文献   

2.
Streptomyces spp. grow as branching hyphae, building the cell wall in restricted zones at hyphal tips. The organization of this mode of polar growth involves three coiled‐coil proteins: DivIVA and Scy, which form apical protein complexes referred to as polarisomes; and the intermediate filament‐like protein FilP, which influences cell shape and interacts with both Scy and DivIVA. Here, we use live cell imaging of Streptomyces venezuelae to clarify the subcellular localization and dynamics of FilP and its effect on hyphal morphology. By monitoring a FilP‐mCherry fusion protein, we show that FilP accumulates in gradient‐like zones behind the hyphal tips. The apical gradient pattern of FilP localization is dependent on hyphal tip extension and immediately dissipates upon growth arrest. Fluorescence recovery after photobleaching experiments show that FilP gradients are dynamic and subject to subunit exchange during vegetative growth. Further, the localization of FilP at hyphal tips is not directly dependent on scy, even though the strongly perturbed morphology of most scy mutant hyphae is associated with mislocalization of FilP. Finally, we find that filP has an effect on the size and position of the foci of key polar growth determinant DivIVA. This effect likely contributes to the phenotype of filP mutants.  相似文献   

3.
The coiled-coil protein DivIVA is a determinant of apical growth and hyphal branching in Streptomyces coelicolor . We have investigated the properties of this protein and the involvement of different domains in its essential function and subcellular targeting. In S. coelicolor cell extracts, DivIVA was present as large oligomeric complexes that were not strongly membrane associated. The purified protein could self-assemble into extensive protein filaments in vitro . Two large and conspicuous segments in the amino acid sequence of streptomycete DivIVAs not present in other homologs, an internal PQG-rich segment and a carboxy-terminal extension, are shown to be dispensable for the essential function in S. coelicolor . Instead, the highly conserved amino-terminal of 22 amino acids was required and affected establishment of new DivIVA foci and hyphal branches, and an essential coiled-coil domain affected oligomerization of the protein.  相似文献   

4.
Streptomycetes are mycelial bacteria that resemble filamentous fungi in their apical growth, branching, and morphogenetic development. One inroad into the largely unknown mechanisms underlying this prokaryotic growth polarity is provided by Streptomyces DivIVA, a protein localized at hyphal tips and involved in tip extension. Another aspect is a proposed migration of nucleoids. During sporulation, the modes of growth and cell division are reorganised. This involves dynamic assembly of FtsZ into a multitude of cytokinetic rings. Controlled by developmental regulators and intriguingly coordinated with chromosome segregation, this leads to spores with a single chromosome each. Genome sequences have shed new light on these aspects and reinforced the role of Streptomyces in bacterial cell biology.  相似文献   

5.
Mycologists have put extreme emphasis on hyphal tip growth as the primary mode of growth in filamentous fungi. Much attention has also been focused on the exocytosis of extracellular enzymes from hyphal tips. However, growth and exocytosis commonly occur at hyphal locations other than tips. Here I briefly review our limited understanding of growth and exocytosis during intercalary hyphal extension, subapical branch initiation, septum formation and secondary wall thickening. Secretion of extracellular enzymes and adhesion molecules from subapical hyphal regions is also discussed. Recent research using advanced live-cell imaging techniques (e.g. Hayakawa et al., 2011 in this issue) is providing new insights into the mechanistic basis of many of these processes.  相似文献   

6.
Streptomyces cells grow by building cell wall at one pole-the hyphal tip. Although analogous to hyphal growth in fungi, this is achieved in a prokaryote, without any of the well-known eukaryotic cell polarity proteins, and it is also unique among bacterial cases of cell polarity. Further, polar growth of Streptomyces and the related mycobacteria and corynebacteria is independent of the MreB cytoskeleton and involves a number of coiled-coil proteins, including the polarity determinant DivIVA. Recent progress sheds light on targeting of DivIVA to hyphal tips and highlight protein phosphorylation in the regulation of actinobacterial growth. Furthermore, cell polarity affects not only cell envelope biogenesis in Streptomyces, but apparently also assembly of fimbriae, conjugation and migration of nucleoids.  相似文献   

7.
DivIVA is a conserved protein in Gram‐positive bacteria that localizes at the poles and division sites, presumably through direct sensing of membrane curvature. DivIVA functions as a scaffold and is vital for septum site selection during vegetative growth and chromosome anchoring during sporulation. DivIVA deletion causes filamentous growth in Bacillus subtilis, whereas overexpression causes hyphal branching in Streptomyces coelicolor. We have determined the crystal structure of the N‐terminal (Nt) domain of DivIVA, and show that it forms a parallel coiled‐coil. It is capped with two unique crossed and intertwined loops, exposing hydrophobic and positively charged residues that we show here are essential for membrane binding. An intragenic suppressor introducing a positive charge restores membrane binding after mutating the hydrophobic residues. We propose that the hydrophobic residues insert into the membrane and that the positively charged residues bind to the membrane surface. A low‐resolution crystal structure of the C‐terminal (Ct) domain displays a curved tetramer made from two parallel coiled‐coils. The Nt and Ct parts were then merged into a model of the full length, 30 nm long DivIVA protein.  相似文献   

8.
Growth of Streptomyces tendae was investigated in submerged culture. Images of several mycelia were analyzed by means of an image-processing system. The studies revealed that tip growth angles and branching outgrowth angles could be regarded as normally distributed. Based on these results, a random model for directional growth of hyphal tips as well as directional growth of branches is proposed. This model shows curved elongation of hyphal tips, so that the morphological development of a mycelium up to the formation of a pellet is predicted, similar to that observed in nature.  相似文献   

9.
Xu H  Chater KF  Deng Z  Tao M 《Journal of bacteriology》2008,190(14):4971-4978
Cellulose synthase and cellulose synthase-like proteins, responsible for synthesizing beta-glucan-containing polysaccharides, play a fundamental role in cellular architectures, such as plant cell and tissue morphogenesis, bacterial biofilm formation, and fruiting-body development. However, the roles of the proteins involved in the developmental process are not well understood. Here, we report that a cellulose synthase-like protein (CslA(Sc)) in Streptomyces has a function in hyphal tip growth and morphological differentiation. The cslA(Sc) replacement mutant showed pleiotropic defects, including the severe delay of aerial-hyphal formation and altered cell wall morphology. Calcofluor white fluorescence analysis demonstrated that polysaccharide synthesis at hyphal tips was dependent on CslA(Sc). cslA(Sc) was constitutively transcribed, and an enhanced green fluorescent protein-CslA(Sc) fusion protein was mostly located at the hyphal tips. An extract enriched in morphogenetic chaplin proteins promoted formation of aerial hyphae by the mutant. Furthermore, a two-hybrid experiment indicated that the glycosyltransferase domain of CslA(Sc) interacted with the tropomyosin-like polarity-determining DivIVA protein, suggesting that the tip-located DivIVA governed tip recruitment of the CslA(Sc) membrane protein. These results imply that the cellulose synthase-like protein couples extracellular and cytoskeletal components functioning in tip growth and cell development.  相似文献   

10.
Morphogenesis of filamentous ascomycetes includes continuously elongating hyphae, frequently emerging lateral branches, and, under certain circumstances, symmetrically dividing hyphal tips. We identified the formin AgBni1p of the model fungus Ashbya gossypii as an essential factor in these processes. AgBni1p is an essential protein apparently lacking functional overlaps with the two additional A. gossypii formins that are nonessential. Agbni1 null mutants fail to develop hyphae and instead expand to potato-shaped giant cells, which lack actin cables and thus tip-directed transport of secretory vesicles. Consistent with the essential role in hyphal development, AgBni1p locates to tips, but not to septa. The presence of a diaphanous autoregulatory domain (DAD) indicates that the activation of AgBni1p depends on Rho-type GTPases. Deletion of this domain, which should render AgBni1p constitutively active, completely changes the branching pattern of young hyphae. New axes of polarity are no longer established subapically (lateral branching) but by symmetric divisions of hyphal tips (tip splitting). In wild-type hyphae, tip splitting is induced much later and only at much higher elongation speed. When GTP-locked Rho-type GTPases were tested, only the young hyphae with mutated AgCdc42p split at their tips, similar to the DAD deletion mutant. Two-hybrid experiments confirmed that AgBni1p interacts with GTP-bound AgCdc42p. These data suggest a pathway for transforming one axis into two new axes of polar growth, in which an increased activation of AgBni1p by a pulse of activated AgCdc42p stimulates additional actin cable formation and tip-directed vesicle transport, thus enlarging and ultimately splitting the polarity site.  相似文献   

11.
Fungi generally display either of two growth modes, yeast-like or filamentous, whereas dimorphic fungi, upon environmental stimuli, are able to switch between the yeast-like and the filamentous growth mode. Signal transduction pathways have been elucidated in the budding yeast Saccharomyces cerevisiae, establishing a morphogenetic network that links cell-cycle events with cellular morphogenesis. Recent molecular genetic studies in several filamentous fungal model systems revealed key components required for distinct steps from fungal spore germination to the maintenance of polar hyphal growth, mycelium formation, and nuclear division. This allows a mechanistic comparison of yeast-like and hyphal growth and the establishment of a core model morphogenetic network for filamentous growth including signaling via the cAMP pathway, Rho modules, and cell cycle kinases. Appreciating similarities between morphogenetic networks of the unicellular yeasts and the multicellular filamentous fungi will open new research directions, help in isolating the central network components, and ultimately pave the way to elucidate the central differences (of many) that distinguish, e.g., the growth mode of filamentous fungi from that of their yeast-like relatives, the role of cAMP signaling, and nuclear division.  相似文献   

12.
Time-lapse imaging of Streptomyces hyphae revealed foci of the essential protein DivIVA at sites where lateral branches will emerge. Overexpression experiments showed that DivIVA foci can trigger establishment of new zones of cell wall assembly, suggesting a key role of DivIVA in directing peptidoglycan synthesis and cell shape in Streptomyces.  相似文献   

13.
Using image analysis the growth kinetics of the single hyphae of the filamentous fungus Aspergillus oryzae has been determined on-line in a flow-through cell at different glucose concentrations in the range from 26 mg L-1 to 20 g L-1. The tip extension rate of the individual hyphae can be described with saturation type kinetics with respect to the length of the hyphae. The maximum tip extension rate is constant for all hyphae measured at the same glucose concentration, whereas the saturation constant for the hyphae varies significantly between the hyphae even within the same hyphal element. When apical branching occurs, it is observed that the tip extension rate decreases temporarily. The number of branches formed on a hypha is proportional to the length of the hypha that exceeds a certain minimum length required to support the growth of a new branch. The observed kinetics has been used to simulate the outgrowth of a hyphal element from a single spore using a Monte Carlo simulation technique. The simulations shows that the observed kinetics for the individual hyphae result in an experimentally verified growth pattern with exponential growth in both total hyphal length and number of tips.  相似文献   

14.
Characteristic features of morphogenesis in filamentous fungi are sustained polar growth at tips of hyphae and frequent initiation of novel growth sites (branches) along the extending hyphae. We have begun to study regulation of this process on the molecular level by using the model fungus Ashbya gossypii. We found that the A. gossypii Ras-like GTPase Rsr1p/Bud1p localizes to the tip region and that it is involved in apical polarization of the actin cytoskeleton, a determinant of growth direction. In the absence of RSR1/BUD1, hyphal growth was severely slowed down due to frequent phases of pausing of growth at the hyphal tip. During pausing events a hyphal tip marker, encoded by the polarisome component AgSPA2, disappeared from the tip as was shown by in vivo time-lapse fluorescence microscopy of green fluorescent protein-labeled AgSpa2p. Reoccurrence of AgSpa2p was required for the resumption of hyphal growth. In the Agrsr1/bud1Delta deletion mutant, resumption of growth occurred at the hyphal tip in a frequently uncoordinated manner to the previous axis of polarity. Additionally, hyphal filaments in the mutant developed aberrant branching sites by mislocalizing AgSpa2p thus distorting hyphal morphology. These results define AgRsr1p/Bud1p as a key regulator of hyphal growth guidance.  相似文献   

15.
A mathematical model for hyphal growth and branching is described which relates cytological events within hyphae to mycelial growth kinetics. Essentially the model quantifies qualitative theories of hyphal growth in which it is proposed that vesicles containing wall precursors and/or enzymes required for wall synthesis are generated at a constant rate throughout a mycelium and travel to the tips of hyphae where they fuse with the plasma membrane, liberating their contents into the wall and increasing the surface area of the hypha to give elongation. The hypothesis that there is a duplication cycle in hyphae which is equivalent to the cell cycle observed in unicellular micro-organisms is also included in the model. Predictions from the model are compared with experimentally observed growth kinetics of mycelia of Geotrichum candidum and Aspergillus nidulans. The finite difference model which was constructed is capable of predicting changes in hyphal length and in the number and positions of branches and septa on the basis of changes in vesicle and nuclear concentration. Predictions were obtained using the model which were in good agreement with experimentally observed data.  相似文献   

16.
Filamentous fungi are widely used in the production of biotechnological compounds. Since their morphology is strongly linked to productivity, it is a key parameter in industrial biotechnology. However, identifying the morphological properties of filamentous fungi is challenging. Owing to a lack of appropriate methods, the detailed three-dimensional morphology of filamentous pellets remains unexplored. In the present study, we used state-of-the-art X-ray microtomography (µCT) to develop a new method for detailed characterization of fungal pellets. µCT measurements were performed using freeze-dried pellets obtained from submerged cultivations. Three-dimensional images were generated and analyzed to locate and quantify hyphal material, tips, and branches. As a result, morphological properties including hyphal length, tip number, branch number, hyphal growth unit, porosity, and hyphal average diameter were ascertained. To validate the potential of the new method, two fungal pellets were studied—one from Aspergillus niger and the other from Penicillium chrysogenum. We show here that µCT analysis is a promising tool to study the three-dimensional structure of pellet-forming filamentous microorganisms in utmost detail. The knowledge gained can be used to understand and thus optimize pellet structures by means of appropriate process or genetic control in biotechnological applications.  相似文献   

17.
The importance of polarized growth for fungi has elicited significant effort directed at better understanding underlying mechanisms of polarization, with a focus on yeast systems. At sites of tip growth, multiple protein complexes assemble and coordinate to ensure that incoming building material reaches the appropriate destination sites, and polarized growth is maintained. One of these complexes is the polarisome that consists of Spa2, Bud6, Pea2, and Bni1 in Saccharomyces cerevisiae. Filamentous hyphae differ in their development and life style from yeasts and likely regulate polarized growth in a different way. This is expected to reflect on the composition and presence of protein complexes that assemble at the hyphal tip. In this study we searched for polarisome homologues in the model filamentous fungus Aspergillus nidulans and characterized the S. cerevisiae Spa2 and Bud6 homologues, SpaA and BudA. Compared to the S. cerevisiae Spa2, SpaA lacks domain II but has three additional domains that are conserved within filamentous fungi. Gene replacement strains and localization studies show that SpaA functions exclusively at the hyphal tip, while BudA functions at sites of septum formation and possibly at hyphal tips. We show that SpaA is not required for the assembly or maintenance of the Spitzenk?rper. We propose that the core function of the polarisome in polarized growth is maintained but with different contributions of polarisome components to the process.  相似文献   

18.
In filamentous fungi, the stabilization of a polarity axis is likely to be a pivotal event underlying the emergence of a germ tube from a germinating spore. Recent results implicate the polarisome in this process and also suggest that it requires localized membrane organization. Here, we employ a chemical genetic approach to demonstrate that ceramide synthesis is necessary for the formation of a stable polarity axis in the model fungus Aspergillus nidulans. We demonstrate that a novel compound (HSAF) produced by a bacterial biocontrol agent disrupts polarized growth and leads to loss of membrane organization and formin localization at hyphal tips. We show that BarA, a putative acyl-CoA-dependent ceramide synthase that is unique to filamentous fungi mediates the effects of HSAF. Moreover, A. nidulans possesses a second likely ceramide synthase that is essential and also regulates hyphal morphogenesis. Our results suggest that filamentous fungi possess distinct pools of ceramide that make independent contributions to polarized hyphal growth, perhaps through the formation of specialized lipid microdomains that regulate organization of the cytoskeleton.  相似文献   

19.
The rate of hyphal elongation and the number of branches per hypha were measured on short sporelings of Aspergillus nidulans growing at different rates. The rate of elongation was proportional to total length in unbranched and branched hyphae. At each growth rate, the number of branches per hypha increased with increasing length and gave approximately straight-line graphs when plotted against length. The average number of branches per unit of hyphal length was quite different for the various growth rates and increased in direct proportion to the growth rate. The results are interpreted to mean that (i) growing tips have a maximum rate at which they can elongate and which is reached at hyphal lengths characteristic of the particular growth rate and (ii) a new branch is formed when the capacity of the hypha to elongate exceeds that of the existing tips.  相似文献   

20.
Anker JF  Gladfelter AS 《Eukaryotic cell》2011,10(12):1679-1693
In budding yeast, new sites of polarity are chosen with each cell cycle and polarization is transient. In filamentous fungi, sites of polarity persist for extended periods of growth and new polarity sites can be established while existing sites are maintained. How the polarity establishment machinery functions in these distinct growth forms found in fungi is still not well understood. We have examined the function of Axl2, a transmembrane bud site selection protein discovered in Saccharomyces cerevisiae, in the filamentous fungus Ashbya gossypii. A. gossypii does not divide by budding and instead exhibits persistent highly polarized growth, and multiple axes of polarity coexist in one cell. A. gossypii axl2Δ (Agaxl2Δ) cells have wavy hyphae, bulbous tips, and a high frequency of branch initiations that fail to elongate, indicative of a polarity maintenance defect. Mutant colonies also have significantly lower radial growth and hyphal tip elongation speeds than wild-type colonies, and Agaxl2Δ hyphae have depolarized actin patches. Consistent with a function in polarity, AgAxl2 localizes to hyphal tips, branches, and septin rings. Unlike S. cerevisiae Axl2, AgAxl2 contains a Mid2 homology domain and may function to sense or respond to environmental stress. In support of this idea, hyphae lacking AgAxl2 also display hypersensitivity to heat, osmotic, and cell wall stresses. Axl2 serves to integrate polarity establishment, polarity maintenance, and environmental stress response for optimal polarized growth in A. gossypii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号