首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
新疆草兔的种群遗传结构和亚种分化   总被引:3,自引:0,他引:3  
Shan WJ  Liu J  Halik M 《动物学研究》2011,32(2):179-187
新疆草兔 (Lepus capensis) 的群体遗传结构至今无系统的研究报道,亚种水平的分类也长期存在争议.该文测定了形态分类上的新疆草兔3个亚种共87个个体的线粒体DNA (mtDNA)控制区(control region,D-Loop)592 bp的序列,经分析发现148个多态性位点,共定义了44个单倍型.新疆草兔的单倍型多样度(h,0.977 ± 0.005)和核苷酸多样度(π,0.064 ± 0.031)都较高,显示了较高的遗传多样性.分子变异分析(AMOVA)结果显示,4个地理群体间的显著分化可能是由地理隔离造成的.群体遗传结构分析显示,新疆草兔包含4个进化枝,并且每个进化枝都对应特定的分布区域,显示了明显的系统地理结构.该研究的结果支持形态分类上草兔西域亚种(L.c.lehmanni)的分类地位; 但中亚亚种(L.c.centrasiaticus)被分为两个独立的进化枝,提示可能存在两个亚种; 帕米尔亚种(L.c.pamirensis)与其他亚种间的遗传距离在13%以上,提示其可能已达到种的分化水平.  相似文献   

2.
In the mid-1990s, a new common dolphin species (Delphinus capensis) was defined in the northeast Pacific using morphological characters and mitochondrial DNA (mtDNA) sequences. This species is sympatric with a second species, Delphinus delphis; morphological differences between the two are slight and it is clear they are closely related. Does the phenotypic distinction result from only a few important genes or from large differences between their nuclear genomes? We used amplified fragment length polymorphism (AFLP) markers to broadly survey the nuclear genomes of these two species to examine the levels of nuclear divergence and genetic diversity between them. Furthermore, to create an evolutionary context in which to compare the level of interspecific divergence found between the two Delphinus taxa, we also examined two distinct morphotypes of the bottlenose dolphin (Tursiops truncatus). A nonmetric multidimensional scaling analysis clearly differentiated both Delphinus species, indicating that significant nuclear genetic differentiation has arisen between the species despite their morphological similarity. However, the AFLP data indicated that the two T. truncatus morphotypes exhibit greater divergence than D. capensis and D. delphis, suggesting that they too should be considered different species.  相似文献   

3.
Sequence analysis of a fragment of the cytochrome b gene in Decapterus russelli sampled from the Indo-Malay archipelago revealed two distinct mitochondrial clades (mean nucleotide divergence=2·2%) whose geographic distribution was heterogeneous (Nei's G ST=0·416). This pointed to a complex pattern of genetic differentiation and demonstrated limited genetic exchange between populations in this highly mobile species.  相似文献   

4.
Divergent mate preferences and subsequent genetic differentiation between populations has been demonstrated, but its effects on interspecific interactions are unknown. Associated species exploiting these mate preferences, for example, may diverge to match local preferences. We explore this idea in the sexually deceptive, fly‐mimicking daisy, Gorteria diffusa, by testing for association between genetic structure in the fly pollinator (a proxy for mate preference divergence) and geographic divergence in floral form. If genetic structure in flies influences interactions with G. diffusa, we expect phylogeographically distinct flies to be associated with different floral forms. Flies associated with forms exploiting only feeding behavior often belonged to several phylogeographic clades, whereas flies associated with forms exploiting male‐mating behavior always belonged to distinct clades, indicating the possibility of pollinator‐mediated floral divergence through phylogeographic variation in mating preferences of male flies. We tested this hypothesis with reciprocal presentations using male flies from distinct clades associated with separate floral forms. Results show that males from all clades exhibit similar preferences, making pollinator driven divergence through geographic variation in mate preference unlikely. Males, however, showed evidence of learned resistance to deceptive traits, suggesting antagonistic interactions between plants and pollinators may drive deceptive floral trait evolution in G. diffusa.  相似文献   

5.
Partial mitochondrial DNA sequences for parts of the cytochrome b gene and control region were obtained for 89 upland bullies Gobiomorphus breviceps from 19 catchments in New Zealand. There were two highly distinctive mtDNA clades: a northern clade corresponding to the North Island, northern South Island and west coast South Island, and a south‐east clade, in the southern and eastern South Island. Within these major clades there were further distinct clades that correlated with geographic sub‐regions and catchments. The marked genetic differentiation has occurred in the absence of obvious morphological divergence. Based on cytochrome b sequence divergences and the molecular clock hypothesis, the northern and southeastern clades correspond with the uplift of the Southern Alps during the Pliocene, while populations in the North Island and northern South Island were estimated to have diverged during the Pleistocene. The widescale geographic divergences were similar to those observed in the galaxiids, Galaxias vulgaris and Galaxias divergens , but biogeographic management boundaries may not be the same, reflecting different evolutionary histories for non‐diadromous species occupying the same areas.  相似文献   

6.
研究利用细胞色素b(Cyt b)基因分析了采自于伊洛河的48个马口鱼(Opsariichthys bidens)个体间的遗传距离, 并构建其系统发育关系。分析结果显示, 48个个体聚为两个支持率为100%的分支, 分支间没有共享单倍型。每个分支的样本覆盖了所有的采样点, 分支内个体间的平均遗传距离为0.2%, 而分支间的遗传距离为3.1%。微卫星分析结果显示, 99.88%的遗传差异来自于种群内个体间, 种群间的差异只占了0.12%, 两个分支种群并没有发生显著的遗传分化(Fst=0.0012, P=1)。以δ13C和δ15N构建了两个分支的生态位, 结果显示, 伊洛河马口鱼的两个分支的营养生态位没有发生分离。基于线粒体Cyt b基因的遗传分歧, 伊洛河马口鱼的两个分支可能代表不同的物种。但它们在种群遗传结构上并没有发生显著的种群分化, 个体间亲缘关系树与系统发育树的分歧暗示种群间不存在生殖隔离, 营养生态位也没有分离。研究结果并不符合隐存种的解释, 伊洛河马口鱼两个分支间线粒体DNA的遗传差异可能源自于祖先种群或者种间杂交。  相似文献   

7.
Evidence is compiled suggesting a slowdown in mean microevolutionary rate for turtle mitochondrial DNA (mtDNA). Within each of six species or species complexes of Testudines, representing six genera and three taxonomic families, sequence divergence estimates derived from restriction assays are consistently lower than expectations based on either (a) the dates of particular geographic barriers with which significant mtDNA genetic clades appear associated or (b) the magnitudes of sequence divergence between mtDNA clades in nonturtle species that otherwise exhibit striking phylogeographic concordance with the genetic partitions in turtles. Magnitudes of the inferred rate slowdowns average eightfold relative to the "conventional" mtDNA clock calibration of 2%/Myr sequence divergence between higher animal lineages. Reasons for the postulated deceleration remain unknown, but two intriguing correlates are (a) the exceptionally long generation length most turtles and (b) turtles' low metabolic rate. Both factors have been suspected of influencing evolutionary rates in the DNA sequences of some other vertebrate groups. Uncertainities about the dates of cladogenetic events in these Testudines leave room for alternatives to the slowdown interpretation, but consistency in the direction of the inferred pattern, across several turtle species and evolutionary settings, suggests the need for caution in acceptance of a universal mtDNA-clock calibration for higher animals.  相似文献   

8.
We examine genetic structuring in three commercially important species of the teleost family Carangidae from Malaysian waters: yellowtail scad Atule mate, bigeye scad Selar crumenophthalmus and yellowstripe scad Selaroides leptolepis, from the Indo-Malay Archipelago. In view of their distribution across contrasting habitats, we tested the hypothesis that pelagic species display less genetic divergence compared with demersal species, due to their potential to undertake long-distance migrations in oceanic waters. To evaluate population genetic structure, we sequenced two mitochondrial (mt)DNA [650 bp of cytochrome oxidase I (coI), 450 bp of control region (CR)] and one nuclear gene (910 bp of rag1) in each species. One hundred and eighty samples from four geographical regions within the Indo-Malay Archipelago including a population of yellowtail from Kuwait were examined. Findings revealed that the extent of genetic structuring among populations in the semi-pelagic and pelagic, yellowtail and bigeye were lower than demersal yellowstripe, consistent with the hypothesis that pelagic species display less genetic divergence compared with demersal species. The yellowtail phylogeny identified three distinct clades with bootstrap values of 86%–99% in mtDNA and 63%–67% in rag1. However, in bigeye, three clades were also observed from mtDNA data while only one clade was identified in rag1 dataset. In yellowstripe, the mtDNA tree was split into three closely related clades and two clades in rag1 tree with bootstraps value of 73%–99% and 56% respectively. However, no geographic structure appears in both mtDNA and rag1 datasets. Hierarchical molecular variance analysis (AMOVA), pair wise FST comparisons and the nearest-neighbour statistic (Snn) showed significant genetic differences among Kuwait and Indo-Malay yellowtail. Within the Indo-Malay Archipelago itself, two distinct mitochondrial lineages were detected in yellowtail suggesting potential cryptic species. Findings suggests varying degrees of genetic structuring, key information relevant to management of exploited stocks, though more rapidly evolving genetic markers should be used in future to better delimit the nature and dynamics of putative stock boundaries.  相似文献   

9.
In this study, the geographic patterns of genetic variation of three rodent species belonging to the tribe Oryzomyini were investigated using the mitochondrial cytochrome b and nuclear IRBP genes in biomes that are undergoing degradation processes to a greater or lesser degree. The samples are from 25 collecting localities distributed throughout the Amazon, Cerrado, Atlantic Forest, and Pampa biomes. The results show that the three species have a population and geographic structure, besides being in demographic equilibrium. The phylogenetic analyses performed on Euryoryzomys russatus and Hylaeamys megacephalus showed these specimens grouped in three distinct clades forming geographic gradients (North-South direction in H. megacephalus). Intraspecific genetic divergence was higher in H. megacephalus (4.53%), followed by E. russatus (1.79%), and lowest in Sooretamys angouya (0.88%). The results obtained indicate that, necessarily, the management strategies to preserve genetic diversity should be different for each species, since each of them presented specific population parameters.  相似文献   

10.
Underground environments are increasingly recognized as reservoirs of faunal diversity. Extreme environmental conditions and limited dispersal ability of underground organisms have been acknowledged as important factors promoting divergence between species and conspecific populations. However, in many instances, there is no correlation between genetic divergence and morphological differentiation. Lucifuga Poey is a stygobiotic fish genus that lives in Cuban and Bahamian caves. In Cuba, it offers a unique opportunity to study the influence of habitat fragmentation on the genetic divergence of stygobiotic species and populations. The genus includes four species and one morphological variant that have contrasting geographical distributions. In this study, we first performed a molecular phylogenetic analysis of the Lucifuga Cuban species using mitochondrial and nuclear markers. The mitochondrial phylogeny revealed three deeply divergent clades that were supported by nuclear and morphological characters. Within two of these main clades, we identified five lineages that are candidate cryptic species and a taxonomical synonymy between Lucifuga subterranea and Lucifuga teresinarum. Secondly, phylogeographic analysis using a fragment of the cytochrome b gene was performed for Lucifuga dentata, the most widely distributed species. We found strong geographical organization of the haplotype clades at different geographic scales that can be explained by episodes of dispersal and population expansion followed by population fragmentation and restricted gene flow. At a larger temporal scale, these processes could also explain the diversification and the distribution of the different species.  相似文献   

11.
We used mitochondrial DNA sequence variation of Sebastes from the southeastern Pacific and three localities in the South Atlantic to address long-standing systematic and evolutionary issues regarding the number of species in the Southern Hemisphere. Sequences of the hypervariable mitochondrial control region were obtained from 10 specimens of S. capensis from South Africa (n = 5) and from Tristan da Cunha Island (n = 5) and 27 of S. oculatus from Valparaiso, Chile (n = 10), and the Falkland Islands (n = 17). Results of the study include (1) significant levels of genetic differentiation among the sampled populations (phi ST = 0.225, P < .000001), thus indicating limited gene flow; (2) corroboration of the existence of two different lineages of austral Sebastes corresponding to S. capensis and S. oculatus; (3) finding that S. capensis is not restricted to Tristan da Cunha and South Africa, but is widespread across the South Atlantic; (4) the position of S. capensis as the ancestral lineage of the austral Sebastes; (5) the existence of a third evolutionary lineage with high levels of genetic divergence, particularly abundant in the south-western Atlantic, which may be recognized as a third austral species of Sebastes.  相似文献   

12.
Phylogeographic studies of flora in species-rich south-western Australia point to complex evolutionary histories, reflecting patterns of persistence and resilience to climatic changes during the Pleistocene. We asked whether coastal areas of the mid-west and south, as well as granite outcrops and inland ranges, have acted as major refugia within this region during Pleistocene climatic fluctuations by analysing phylogeographic patterns in the shrub Calothamnus quadrifidus R.Br. (Myrtaceae). We determined variation in chloroplast DNA data for 41 populations across the geographic range. Relationships and major clades were resolved using parsimony and Bayesian analyses. We tested for demographic and spatial expansion of the major clades and estimated clade divergence dates using an uncorrelated, lognormal relaxed clock based on two conservative chloroplast mutation rates. Two distinct phylogeographic clades were identified showing divergence during the Pleistocene, consistent with other phylogeographic studies of south-west Australian flora, emphasising the impact of climatic oscillations in driving divergence in this landscape. The southern clade was more diverse, having higher haplotype diversity and greater genetic structure, while the northern clade showed evidence of fluctuation in population size. Regions of high haplotype diversity with adjacent areas of low diversity observed in each clade indicated the locations of two coastal refugia: one on the south coast and another along the mid-west coast. This is the first evidence for major Pleistocene refugia using chloroplast genetic data in a common, widespread species from this region.  相似文献   

13.
Population divergence can occur due to mechanisms associated with geographic isolation and/or due to selection associated with different ecological niches. Much of the evidence for selection‐driven speciation has come from studies of specialist insect herbivores that use different host plant species; however, the influence of host plant use on population divergence of generalist herbivores remains poorly understood. We tested how diet breadth, host plant species and geographic distance influence population divergence of the fall webworm (Hyphantria cunea; FW). FW is a broadly distributed, extreme generalist herbivore consisting of two morphotypes that have been argued to represent two different species: black‐headed and red‐headed. We characterized the differentiation of FW populations at two geographic scales. We first analysed the influence of host plant and geographic distance on genetic divergence across a broad continental scale for both colour types. We further analysed the influence of host plant, diet breadth and geographic distance on divergence at a finer geographic scale focusing on red‐headed FW in Colorado. We found clear genetic and morphological distinction between red‐ and black‐headed FW, and Colorado FW formed a genetic cluster distinct from other locations. Although both geographic distance and host plant use were correlated with genetic distance, geographic distance accounted for up to 3× more variation in genetic distance than did host plant use. As a rare study investigating the genetic structure of a widespread generalist herbivore over a broad geographic range (up to 3,000 km), our study supports a strong role for geographic isolation in divergence in this system.  相似文献   

14.
Yang FS  Qin AL  Li YF  Wang XQ 《PloS one》2012,7(5):e37196
The complex tectonic events and climatic oscillations in the Qinghai-Tibetan Plateau (QTP), the largest and highest plateau in the world, are thought to have had great effects on the evolutionary history of the native plants. Of great interest is to investigate plant population genetic divergence in the QTP and its correlation with the geologic and climatic changes. We conducted a range-wide phylogeographical analysis of M. integrifolia based on the chloroplast DNA (cpDNA) trnL-trnF and trnfM-trnS regions, and defined 26 haplotypes that were phylogenetically divided into six clades dated to the late Tertiary. The six clades correspond, respectively, to highly differentiated population groups that do not overlap in geographic distribution, implying that the mountain ranges acting as corridors or barriers greatly affected the evolutionary history of the QTP plants. The older clade of M. integrifolia only occurs in the southwest of the species' range, whereas the distributions of younger clades extend northeastward in the eastern QTP, suggesting that climatic divergence resulting from the uplift of the QTP triggered the initial divergence of M. integrifolia native to the plateau. Also, the nrDNA ITS region was used to clarify the unexpected phylogenetic relationships of cpDNA haplotypes between M. integrifolia and M. betonicifolia. The topological incongruence between the two phylogenies suggests an ancestral hybridization between the two species. Our study indicates that geographic isolation and hybridization are two important mechanisms responsible for the population differentiation and speciation of Meconopsis, a species-rich genus with complex polyploids.  相似文献   

15.
We investigated the phylogenetic relationships and estimated the historical demography of the Japanese fire-bellied newt, Cynops pyrrhogaster, from Japanese mainlands using 1407-bp sequences of the mitochondrial DNA (NADH6, tRNAglu, cyt b) and 1208-bp sequences of nuclear DNA (Rag-1) genes. Phylogenetic trees based on mitochondrial DNA revealed four major haplotype clades (NORTHERN, CENTRAL, WESTERN, and SOUTHERN clades) within this species. Degree of genetic differentiation among major haplotype clades was very large for intraspecific variation, suggesting this species to be composed of four species lineages that replace each other geographically. Nuclear genetic variation presented no obvious patterns of geographic structure except for the distinctness of populations diagnosed by NORTHERN clade of mitochondrial haplotypes, suggesting results of incomplete lineage sorting. Current distribution and estimated divergence times for the genus Cynops suggest that the common ancestor of two Japanese species (C. pyrrhogaster and C. ensicauda from the Ryukyu Islands) had diverged at the edge of the continent corresponding to the present East China Sea and Central Ryukyus. Subsequent range expansion to Japanese mainland seems to have occurred in the middle Miocene. Population-genetic analyses indicated that all species lineages, except for the SOUTHERN one, experienced geographic population reductions and expansions associated with glacial and postglacial climatic oscillations.  相似文献   

16.
Two clades of the lesser Egyptian jerboa Jaculus jaculus sensu lato were recently described in North Africa and considered as cryptic species. Members of both clades are also found in Israel, where they can be easily identified according to fur and tail colouration and morphology of the male external genitalia, but cannot be separated confidently using skull characters. Examination of type specimens demonstrated that the correct names for the two species are Jaculus jaculus (Linnaeus 1758) and Jaculus hirtipes (Lichtenstein, 1823). Comparisons of geographic and habitat differences of the two species revealed a high niche divergence between them, slightly higher in the sympatric North African populations than in the parapatric populations of Israel and Sinai. A low niche divergence was detected between North African and Middle Eastern populations of J. jaculus, and a low niche convergence between North African and Middle Eastern populations of J. hirtipes. The levels of niche differentiation coincide with those of genetic differences.  相似文献   

17.
The paleoendemic opilionid Fumontana deprehendor is restricted to a small area of mid-elevation forested habitats in the southern Blue Ridge province of the Appalachian Mountains. In a recent study we reported on the discovery of 22 new montane populations of this monotypic genus, specimens from which exhibit remarkably little morphological divergence despite their separation by intervening lowlands and large riverine barriers. Here, we further explore spatial and temporal patterns of divergence in this taxon using DNA sequence data from a portion of the mitochondrial cytochrome c oxidase subunit I gene ( approximately 1000 bp) and full-length sequences of both nuclear ribosomal internal transcribed spacer regions, including the intervening 5.8S rRNA region ( approximately 700 bp total). Bayesian phylogenetic analyses of these independent data sets reveal congruent genealogical patterns, with all data partitioning and combination strategies consistently recovering five allopatric, geographically cohesive genetic clades. These clades show an almost complete lack of internal genetic divergence, with most individuals sharing a clade-specific, regionally widespread haplotype. The geographic distribution of these clades corresponds to patterns seen in other upland taxa of the region, possibly indicating coincident vicariance. Because of a lack of quantifiable morphological divergence and relatively modest levels of genetic divergence, we conservatively refer to the geographically cohesive genetic clades as "phylogeographic units", although these may actually represent cryptic species. Conservation implications and the prospect for future comparative arachnid phylogeography in the southern Appalachians are discussed in light of the results presented here.  相似文献   

18.
We infer the phylogenetic relationships of finescale shiners of the genus Lythrurus, a group of 11 species of freshwater minnows widely distributed in eastern North America, using DNA sequences from the ND2 (1047 bp), ATPase8 and 6 (823 bp), and ND3 (421 bp) mitochondrial protein-coding genes. The topologies resulting from maximum parsimony, Bayesian, and maximum likelihood tree building methods are broadly congruent, with two distinct clades within the genus: the L. umbratilis clade (L. umbratilis + L. lirus + (L. fasciolaris + (L. ardens, L. matutinus))) and the L. bellus clade (L. fumeus + L. snelsoni + (L. roseipinnis + (L. atrapiculus + (L. bellus, L. algenotus)))). Support is weak at the base of several clades, but strongly supported nodes differ significantly from prior investigations. In particular, our results confirm and extend earlier studies recovering two clades within Lythrurus corresponding to groups with largely "northern" and "southern" geographic distributions. Several species in this genus are listed in the United States as threatened or of special concern due to habitat degradation or limited geographic ranges. In this study, populations assigned to L. roseipinnis show significant genetic divergence suggesting that there is greater genetic diversity within this species than its current taxonomy reflects. A full accounting of the biodiversity of the genus awaits further study.  相似文献   

19.
Variability of mitochondrial DNA (mtDNA) of the honey bee Apis mellifera L. has been investigated by restriction and sequence analyses on a sample of 68 colonies from ten different subspecies. The 19 mtDNA types detected are clustered in three major phylogenetic lineages. These clades correspond well to three groups of populations with distinct geographical distributions: branch A for African subspecies (intermissa, monticola, scutellata, andansonii and capensis), branch C for North Mediterranean subspecies (caucasica, carnica and ligustica) and branch M for the West European populations (mellifera subspecies). These results partially confirm previous hypotheses based on morphometrical and allozymic studies, the main difference concerning North African populations, now assigned to branch A instead of branch M. The pattern of spatial structuring suggests the Middle East as the centre of dispersion of the species, in accordance with the geographic areas of the other species of the same genus. Based on a conservative 2% divergence rate per Myr, the separation of the three branches has been dated at about 1 Myr BP.  相似文献   

20.
Vicariant geographic isolation and resource partitioning have long been independently identified as processes contributing to the morphological divergence of closely-related species. However, little is known about the extent to which vicariant history influences the adaptive ecological divergence associated with resource partitioning and trophic specialization within species. The present study thus quantified the contribution of vicariant historical genetic divergence to the adaptive contemporary morphological divergence of intraspecific feeding specialists in the Rainbow smelt (Pisces: Osmerus mordax ). This species is characterized by the polyphyletic origin of two lacustrine feeding specialists originating in two intraspecific lineages associated with independent glacial refuges. The historical genetic segregation was initiated approximately 350 000 years ago, whereas the lacustrine trophic segregation arose within the past 10 000 years. Wild caught lacustrine smelt populations were grouped a priori based on known historical genetic identities (Acadian and Atlantic mitochondrial DNA clades) and contemporary feeding specializations (microphageous and macrophageous morphotypes). The present study demonstrated that independent suites of correlated morphological traits are associated with either vicariant history or contemporary feeding specializations. Second, functionally-similar feeding specialists exhibit distinct morphologies resulting largely from vicariant historical processes. Although, the evolutionary processes producing historical phenotypes remains unknown, the results obtained demonstrate how adaptive radiation associated with ecological resource partitioning and feeding specializations can be strongly influenced by intraspecific phenotypic diversification resulting from relatively recent vicariant histories.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 140–151.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号