首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and delta(13)C values were determined for gaseous CO(2), organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO(2), and the cell biomass were small, ranging from 0 to 2 per thousand. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9 per thousand. SRB grown lithoautotrophically consumed less than 3% of the available CO(2) and exhibited substantial discrimination (calculated as isotope fractionation factors [alpha]), as follows: for Desulfobacterium autotrophicum, alpha values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the alpha value was 0.0138, and for Desulfotomaculum acetoxidans, the alpha value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO(2) resulted in biomass with a delta(13)C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H(2)), ecological forces can also influence carbon isotope discrimination by SRB.  相似文献   

2.
Two specific primers were developed for the amplification of 16S rRNA genes of Desulfotomaculum lineage 1 to detect members of the genus Desulfotomaculum in rice field soil. The combination of both primers in PCR allowed the specific amplification and cloning of ten 16S rDNA sequences of this group from rice paddy soil DNA extracts. The phylogenetic analysis showed that these sequences formed a deeply branching cluster within Desulfotomaculum lineage 1, together with two sequences from the database and two sequences from a hydrocarbon-contaminated aquifer. Dissimilarity values to validly described species, including recently isolated strains of Desulfotomaculum from rice paddy microcosms, were higher than 12%. Within the new cluster the cloned sequences formed three separate groups which were each represented by at least two sequences with identities of >/=99% while one sequence represented an additional group. The sequences should represent sulfate-reducing organisms because they clearly fell into the physiologically coherent group of Gram-positive sulfate reducers. The relative abundance of bacteria of the Desulfotomaculum lineage 1 in rice paddy soil and root samples was estimated with rRNA dot blot hybridizations of extracted RNA. The relative RNA content of Desulfotomaculum lineage 1 was 0.55% in the bulk soil and 1% in the rice root samples, respectively, of the total 16S rRNA content (probe Eub338). Hybridization of rRNA with a probe targeting the new cluster represented by the cloned sequences confirmed the high abundance of 16S rRNA sequences from this cluster in the rice paddy field samples. Another hybridization probe detecting Desulfotomaculum acetoxidans and two closely related Desulfotomaculum isolates from rice paddy soil indicated that these bacteria were less abundant.  相似文献   

3.
Desulfotomaculum acetoxidans Widdel and Pfennig 1977 was one of the first sulfate-reducing bacteria known to grow with acetate as sole energy and carbon source. It is able to oxidize substrates completely to carbon dioxide with sulfate as the electron acceptor, which is reduced to hydrogen sulfide. All available data about this species are based on strain 5575(T), isolated from piggery waste in Germany. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a Desulfotomaculum species with validly published name. The 4,545,624 bp long single replicon genome with its 4370 protein-coding and 100 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

4.
We examined the potential use of natural-abundance stable carbon isotope ratios of lipids for determining substrate usage by sulfate-reducing bacteria (SRB). Four SRB were grown under autotrophic, mixotrophic, or heterotrophic growth conditions, and the delta13C values of their individual fatty acids (FA) were determined. The FA were usually 13C depleted in relation to biomass, with Deltadelta13C(FA - biomass) of -4 to -17 per thousand; the greatest depletion occurred during heterotrophic growth. The exception was Desulfotomaculum acetoxidans, for which substrate limitation resulted in biomass and FA becoming isotopically heavier than the acetate substrate. The delta13C values of FA in Desulfotomaculum acetoxidans varied with the position of the double bond in the monounsaturated C16 and C18 FA, with FA becoming progressively more 13C depleted as the double bond approached the methyl end. Mixotrophic growth of Desulfovibrio desulfuricans resulted in little depletion of the i17:1 biomarker relative to biomass or acetate, whereas growth with lactate resulted in a higher proportion of i17:1 with a greater depletion in 13C. The relative abundances of 10Me16:0 in Desulfobacter hydrogenophilus and Desulfobacterium autotrophicum were not affected by growth conditions, yet the Deltadelta13C(FA - substrate) values of 10Me16:0 were considerably greater during autotrophic growth. These experiments indicate that FA delta13C values can be useful for interpreting carbon utilization by SRB in natural environments.  相似文献   

5.
Based on comparative analysis of 16S rRNA sequences and the recently established phylogeny of the genus Desulfotomaculum , a set of phylogenetically nested hybridization probes was developed and characterized. A genus-specific probe targets all known Desulfotomaculum species (with the exception of Desulfotomaculum acetoxidans ), and five specific probes target subclusters within the Desulfotomaculum genus. The dissociation temperature of each probe was determined experimentally. Probe specificities were verified through hybridizations with pure culture rRNA isolated from a wide variety of target and non-target organisms and through an evaluation of probe 'nesting' using samples obtained from four different environments. Fixation and hybridization conditions for fluorescence in situ hybridizations were also optimized. The probes were used in quantitative membrane hybridizations to determine the abundance of Desulfotomaculum species in thermophilic anaerobic digesters, in soil, in human faeces and in pig colon samples. Desulfotomaculum rRNA accounted for 0.3–2.1% of the total rRNA in the digesters, 2.6–6.6% in soil, 1.5–3.3% in human faeces and 2.5–6.2% in pig colon samples.  相似文献   

6.
Sulfate-reducing bacteria in littoral sediment of Lake Constance   总被引:6,自引:0,他引:6  
Abstract The viable population of sulfate-reducing bacteria (SRB) in littoral sediments of Lake Constance was investigated using enrichment and enumeration techniques. Enrichment studies established that most types of SRB grew best in media with low salt concentrations (max. 0.4 g Cl/1), consistent with the low salinity of the freshwater habitat. Enumerations were based on an adequate medium with the following electron donors: H2, lactate, acetate, propionate, butyrate, caprylate, succinate, benzoate, or S2O32− for thiosulfate-disproportionating bacteria. Cultures were incubated for 6 weeks to obtain maximum counts. A maximum cell density of 6.3 × 106 cells per ml sediment was estimated, which is the highest number of SRB ever reported for anoxic sediments. A comparison with measured sulfate reduction rates showed that the enumeration techniques were about 10–100-fold more efficient than those previously used. The population of SRB had a characteristic structure consisting of 87.7% H2-utilizing SRB (physiologically resembling the classical Desulfovibrio species); 12.0% propionate utilizers (tentatively identified as Desulfobulbus species); 0.3% long chain fatty acid-oxidizing Desulfovibrio sapovorans species. Acetate-utilizing SRB ( Desulfotomaculum acetoxidans ) constituted ≤ 0.05% of the total estimated population. Moreover, the latter species was only present as inactive spores. Benzoate-degrading SRB were not detected.  相似文献   

7.
Isotopic labeling of biomarker molecules is a technique applied to link microbial community structure with activity. Previously, we successfully labeled phospholipid fatty acids (PLFA) of suspended nitrate-reducing bacteria in an aquifer. However, the application of the method to low energy-yielding processes such as sulfate reduction, and extension of the analysis to attached communities remained to be studied. To test the feasibility of the latter application, an anoxic test solution of 500 l of groundwater with addition of 0.5 mM Br- as a conservative tracer, 1.1 mM SO4(2-), and 2.0 mM [2-13C]acetate was injected in the transition zone of a petroleum hydrocarbon-contaminated aquifer where sulfate-reducing and methanogenic conditions prevailed. Thousand liters of test solution/groundwater mixture were extracted in a stepwise fashion after 2-46 h incubation. Computed apparent first-order rate coefficients were 0.31+/-0.04 day(-1) for acetate and 0.34+/-0.05 day(-1) for SO4(2-) consumption. The delta13C increased from -71.03 per thousand to +3352.50 per thousand in CH4 and from -16.15 per thousand to +32.13 per thousand in dissolved inorganic carbon (DIC). A mass balance suggested that 43% of the acetate-derived (13)C appeared in DIC and 57% appeared in CH4. Thus, acetate oxidation coupled to sulfate reduction and acetoclastic methanogenesis occurred simultaneously. The delta13C of PLFA increased on average by 27 per thousand in groundwater samples and 4 per thousand in sediment samples. Hence, both suspended and attached communities actively degraded acetate. The PLFA labeling patterns and fluorescent in situ hybridization (FISH) analyses of sediment and groundwater samples suggested that the main sulfate-reducing bacteria degrading the acetate were Desulfotomaculum acetoxidans and Desulfobacter sp. in groundwater, and D. acetoxidans in sediment.  相似文献   

8.
Three independent 28 or 32-day stationary cultures of Desulfotomaculum acetoxidans DSM 771 strain were carried out under anoxic conditions in acetate or lactate-containing media. The acids were the sole carbon and energy sources in these media. During cultivation the turbidity (for calculation of cell division index) and hydrogen sulfide contents were determined in culture broth and reduced glutathione and protein concentrations were assayed in culture broth supernatant. In these three successive cultures, the bacterium initially grew much faster on lactate than on acetate. However, after two weeks of culture this difference disappeared and in fact the growth rate was higher on acetate than on lactate. The level of H2S formed (product of the dissimilatory pathway of sulfate reduction) demonstrated that this pathway was more effective when lactate was a carbon source and the average H2S concentration was from over 3-fold to about 9-fold greater in lactate than in acetate cultures. Also GSH (glutathione, product of the assimilatory sulfate reduction pathway) average level was about 2-fold higher in lactate-grown cultures. The high negative values of the correlation coefficients between GSH and O2 levels, especially during the first 4 days of cultivation, indicate that GSH is a very important antioxidizing extracellular agent of D. acetoxidans. The rapid increase in GSH level, preceding the release of H2S, indicates the metabolic priority of the assimilation pathway of sulfate reduction. For both carbon sources the highest coefficient of correlation was found between protein and H2S levels. These results suggest that hydrogen sulfide is bound by proteins (which contain cysteinyl residues) secreted by D. acetoxidans cells. Indicated way of H2S bounding could result in its accumulation. This coefficient of correlation increased gradually in the successive cultures. The ratio of H2S concentration to protein concentration increased gradually in the successive cultures, too.  相似文献   

9.
Bacterial populations and pathways involved in acetate and propionate consumption were studied in anoxic brackish sediment from the Grosser Jasmunder Bodden, German Baltic Sea. Uptake of acetate and propionate from the porewater was studied using stable carbon isotope-labeled compounds. Labeled acetate was not produced as an intermediate during propionate uptake experiments, and propionate consumption was not affected by the addition of acetate. In parallel, incorporation of labeled acetate and propionate into phospholipid-derived fatty acids (PLFA) was studied to indicate bacterial populations involved in the consumption of these substrates. The (13)C-acetate label was mainly recovered in even-numbered PLFA (16:1omega7c, 16:0 and 18:1omega7c). In contrast, primarily odd-numbered PLFA (a15:0, 15:0, 17:1omega6 and 17:0) and the even-numbered i16:0 were labeled after incubation with (13)C-propionate. Although single PLFA labeled with propionate are commonly found in sulfate reducers, the complete PLFA-labeling pattern does not resemble any of the know strains. However, the acetate-labeling pattern is similar to Desulfotomaculum acetoxidans and Desulfofrigus spp., two acetate-consuming, sulfate reducers. In conclusion, our data suggest that acetate and propionate were predominantly consumed by different, specialized groups of sulfate-reducing bacteria.  相似文献   

10.
Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO3), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS), it only oxidized the HS. The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl2 to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe3S4). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS to form polysulfide and sulfur (S0), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S0 → Fe3S4). Further chemical transformation to pyrite (FeS2) is expected at higher temperatures (>60°C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
This study focused on the physiological, chemotaxonomic, and genotypic characteristics of two thermophilic spore-forming sulfate-reducing bacterial strains, 435T and 781, of which the former has previously been assigned to the subspecies Desulfotomaculum nigrificans subsp. salinus. Both strains reduced sulfate with the resulting production of H2S on media supplemented with H2 + CO2, formate, lactate, pyruvate, malate, fumarate, succinate, methanol, ethanol, propanol, butanol, butyrate, valerate, or palmitate. Lactate oxidation resulted in acetate accumulation; butyrate was oxidized completely, with acetate as an intermediate product. Growth on acetate was slow and weak. Sulfate, sulfite, thiosulfate, and elemental sulfur, but not nitrate, served as electron acceptors for growth with lactate. The bacteria performed dismutation of thiosulfate to sulfate and hydrogen sulfide. In the absence of sulfate, pyruvate but not lactate was fermented. Cytochromes of b and c types were present. The temperature and pH optima for both strains were 60-65 degrees C and pH 7.0. Bacteria grew at 0 to 4.5-6.0% NaCl in the medium, with the optimum being at 0.5-1.0%. Phylogenetic analysis based on a comparison of incomplete 16S rRNA sequences revealed that both strains belonged to the C cluster of the genus Desulfotomaculum, exhibiting 95.5-98.3% homology with the previously described species. The level of DNA-DNA hybridization of strains 435T and 781 with each other was 97%, while that with closely related species D. kuznetsovii 17T was 51-52%. Based on the phenotypic and genotypic properties of strains 435T and 781, it is suggested that they be assigned to a new species: Desulfotomaculum salinum sp. nov., comb. nov. (type strain 435T = VKM B 1492T).  相似文献   

12.
A quantitative method for the study of iron sulfides precipitated in liquid cultures of bacteria is described. This method can be used to quantify and discriminate among amorphous iron sulfide (FeS(amorph)), iron monosulfide minerals such as mackinawite or greigite (FeS(min)), and iron disulfide minerals such as pyrite or marcasite (FeS(2min)) formed in liquid cultures. Degradation of iron sulfides is performed using a modified Cr(2+) reduction method with reflux distillation. The basic steps of the method are: first, separation of FeS(amorph); second, elimination of interfering species of S such as colloidal sulfur (S(c) degrees ), thiosulphate (S(2)O(3)(2-)) and polysulfides (S(x)(2-)); third, separation of FeS(min); and fourth, separation of FeS(2min). The final product is H(2)S which is determined after trapping. The efficiency of recovery is 96-99% for FeS(amorph), 76-88% for FeS(min), and >97% for FeS(2min). This method has a high reproducibility if the experimental conditions are rigorously applied and only glass conduits are used. A well ventilated fume hood must be used because of the toxicity and volatility of several reagents and products. The advantage relative to previously described methods are better resolution for iron sulfide species and use of the same bottles for both incubation of cultures and acid degradation. The method can also be used for Fe/S stoichiometry with sub-sampling and Fe analysis.  相似文献   

13.
We characterized the diversity of sulphate-reducing bacteria (SRB) associated with South African gold mine boreholes and deep aquifer systems in Washington State, USA. Sterile cartridges filled with crushed country rock were installed on two hydrologically isolated and chemically distinct sites at depths of 3.2 and 2.7 km below the land surface (kmbls) to allow development of biofilms. Enrichments of sulphate-reducing chemolithotrophic (H2) and organotrophic (lactate) bacteria were established from each site under both meso- and thermophilic conditions. Dissimilatory sulphite reductase (Dsr) and 16S ribosomal RNA (rRNA) genes amplified from DNA extracted from the cartridges were most closely related to the Gram-positive species Desulfotomaculum thermosapovorans and Desulfotomaculum geothermicum, or affiliated with a novel deeply branching clade. The dsr sequences recovered from the Washington State deep aquifer systems affiliated closely with the South African sequences, suggesting that Gram-positive sulphate-reducing bacteria are widely distributed in the deep subsurface.  相似文献   

14.
This work was designed to find the cause of the delay in hydrogen sulfide dissimilation in Desulfotomaculum acetoxidans DSM 771, which is dependent on the sulfate uptake. This bacterium grown without addition of any aromatic compound was shown by spectrum analysis with the methylene method to contain hydroxy-benzoate derivatives. The presence of these compounds was confirmed by HPLC in fractions obtained from cell walls after 15 days of culture. The test with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt seemed to indicate the presence of peroxidase, which probably oxidized benzoate to its hydroxy derivatives. The test with 5-sulfo-salicylic acid proved the ability of the investigated strain to utilize arylsulfates and to reduce sulfate group to hydrogen sulfide. On the basis of the above data, we propose the following sequence of reactions: 1, benzoate secretion; 2, benzoate hydroxylation; 3, sulfonation of hydroxy-benzoate derivatives.  相似文献   

15.
A systematic, kinetic study and comparison of the leaching of mixed metal sulfides by galvanic conversion and in the presence of bacteria has been carried out for the first time using both powder (-100 to -400 mesh) and larger (bulk) specimen systems. The rates of dissolution of copper from chalcopyrite and zinc from sphalerite as single, electrically isolated (separate) systems were compared with electrically contacting (galvanically coupled) systems involving CuFeS(2)/FeS(2) and ZnS/FeS(2), with and without bacteria and at temperatures of 30 and 55 degrees C. The dissolution of Cu was observed to increase by a factor of 4.6 when the galvanic leaching of CuFeS(2)/FeS(2) was compared to CuFeS(2) leaching at 30 degrees C. When bacteria were present, Cu dissolution increased by an additional factor of 2.1 in the CuFeS(2)/FeS(2) system. At 55 degrees C, the corresponding ratios for Cu were 4.3 and 2.7, respectively. The galvanic leaching of Zn in the ZnS/FeS(2) system compared to ZnS leaching increased by a factor of 2 at 30 degrees C; in the presence of bacteria the dissolution of Zn from the ZnS/FeS(2) system increased by an additional factor of 1.3 at the same temperature. By comparison, the ratio of Cu dissolution from CuFeS(2) in acid-bacterial medium and sterile controls (without bacteria) was 5.5. The corresponding ratio for Zn from ZnS was 2.2 at both 30 and 55 degrees C. The order of reaction was found to be essentially first order for the leaching of powder systems at both 30 and 55 degrees C (with T. Ferrooxidans and thermophilic microorganisms, respectively). The corresponding reaction rate constants were observed to be 12.6 and 22.9 for T. ferrooxidans and the thermophilic microorganisms, respectively. Activation energies for the various systems were also determined.  相似文献   

16.
Hydrogenases, which are ubiquitous in sulfate-reducing bacteria, were previously thought to be absent from Desulfuromonas acetoxidans. For the first time, a hydrogenase from the strict anaerobic sulfur-respiring bacterium D. acetoxidans, grown on ethanol-malate, was detected and enriched. To assay the role of the hydrogenase in the energetic metabolism of D. acetoxidans, we examined the reactivity of the enzyme with polyheme cytochromes from the same bacterium.  相似文献   

17.
The complete oxidation of methylmercaptan (MSH) and dimethyl sulfide (DMS) with sulfate or nitrate as electron acceptors was observed in enrichment cultures and dilution series using thermophilic fermentor sludge as the inoculum. Three new strains of thermophilic sulfate reducers were isolated in pure culture (strains MTS5, TDS2, and SDN4). Strain MTS5 grew on MSH and strain TDS2 grew on DMS whereas strain SDN4 grew on either MSH or DMS. The cellular growth yields were 2.57 g (dry weight)/mol of MSH for strain MTS5 and 6.02 g (dry weight)/mol of DMS for strain TDS2. All strains used sulfate, sulfite, or thiosulfate as electron acceptors, but only strain SDN4 used nitrate. DMS and MSH were oxidized to CO2 and sulfide with either sulfate or nitrate as the electron acceptor. Sulfate was stoichiometrically reduced to sulfide while nitrate was reduced to ammonium. All strains were motile rods, required biotin for growth, lacked desulfoviridin, had DNA with G+C contents of 48 to 57 mol% and probably belonged to the genus Desulfotomaculum. This is the first report of the oxidation of MSH and DMS by pure cultures of sulfate-reducing bacteria.  相似文献   

18.
Enzyme activities conceivably involved in the activation of sulfate were studied with Desulfotomaculum ruminis, D. acetoxidans, D. nigrificans, D. orientis, and Desulfovibrio vulgaris. Cell lysates of these species revealed activities of at least 8 nkat/mg protein (i.e., 480 nmol per min and mg protein) of ATP sulfurylase, acetate kinase, phosphotransacetylase and adenylate kinase. ADP sulfurylase was not detected. Pyrophosphatase activity was high (73 to 97 nkat/mg protein) in Desulfotomaculum orientis and Desulfovibrio vulgaris. In these strains pyrophosphatase was activated by addition of a reductant (dithionite). In Desulfotomaculum ruminis, D. acetoxidans, and D. nigrificans, only low pyrophosphatase activity (2.5 to 6.3 nkat/mg protein) was measured, which was not reductant-activated. Some hints indicated a membrane association of the pyrophosphatase in D. ruminis, and possibly also in D. acetoxidans and D. nigrificans. Activities of a pyrophosphate-dependent acetate kinase (PPi:acetate kinase), a PPi:AMP kinase or a polyphosphate:AMP kinase were not detected or negligible. The results are not in favour of the assumption that pyrophosphate formed by ATP sulfurylase during sulfate activation might be utilized to form acetyl phosphate in Desulfotomaculum species. Contrary results of other authors were shown to be artefacts caused by chemical hydrolysis of acetyl phosphate in the molybdate-sulfuric acid reagent used for phosphate determination.Abbreviations Pi orthophosphate - PPi pyrophosphate - APS adenosine phosphosulfate - AP5A, P1 P5-di(adenosine-5-)pentaphosphate - CTAB cetyltrimethylammonium bromide - MOPS 3-(N-morpholino)propanesulfonic acid - HEPES N(-2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid  相似文献   

19.
Stable Carbon Isotope Fractionation by Sulfate-Reducing Bacteria   总被引:5,自引:1,他引:4       下载免费PDF全文
Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and δ13C values were determined for gaseous CO2, organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO2, and the cell biomass were small, ranging from 0 to 2‰. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9‰. SRB grown lithoautotrophically consumed less than 3% of the available CO2 and exhibited substantial discrimination (calculated as isotope fractionation factors [α]), as follows: for Desulfobacterium autotrophicum, α values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the α value was 0.0138, and for Desulfotomaculum acetoxidans, the α value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO2 resulted in biomass with a δ13C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H2), ecological forces can also influence carbon isotope discrimination by SRB.  相似文献   

20.
Abstract The survival after oxygen stress was studied with eight species of sulfate-reducing bacteria. In the absence of sulfide all species tolerated 6 min of aeration without loss of viability. Even after 3 h of aeration the viability of four species ( Desulfovibrio vulgaris, D. desulfuricans, D. salexigens and Desulfobacter postgatei ) was not impaired. Four other species were sensitive to 3 h of aeration: the surviving fractions of Desulfotomaculum ruminis, D. nigrificans and Desulfococcus multivorans were about 1%, that of Desulfotomaculum orientis about 0.01%. Formation of spores resulted in oxygen resistance of D. orientis . Reducing agents did not protect the vegetative cells of this strain against oxygen toxicity. In contrast, sulfhydryl group-containing agents increased the oxygen sensitivity considerably.
Growth of sulfate- and sulfur-reducing bacteria in oxygen-sulfide gradients in agar tubes was studied. In the gradients these strictly anaerobic bacteria revealed oxygen-dependent growth in sulfate- and sulfur-free medium. Three sulfate-reducing bacteria that could not use thiosulfate or sulfur as electron acceptor failed to grow in oxygen-sulfide gradients. Obviously, not directly molecular oxygen, but oxidation products of sulfide, such as thiosulfate or sulfur, were used as electron acceptors and were continuously regenerated in a cycling process from sulfide by autoxidation. The conceivable ecological significance of a short sulfur cycle driven by autoxidation of sulfide is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号