首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have investigated the occurrence and role of polyomavirus DNA synthesis in neoplastic transformation by this virus. We show that after infection of Fischer rat F-111 cells at 37 degrees C, there is two- to threefold increase in the level of viral DNA as compared with the input signal, with a peak observed between 5 and 7 days postinfection. Viral DNA synthesis is about 10 times higher at 33 degrees C and increases up to 15 days postinfection. Most of the viral DNA produced is supercoiled (form I DNA). On the basis of in situ hybridization, it appears that viral replication is restricted to a small fraction of the population. At the lower temperature, more cells are permissive for viral DNA synthesis and the level of synthesis per permissive cell is higher. The DNA synthesis observed is large T-antigen dependent, and the increase in viral DNA synthesis at 33 degrees C is paralleled by an increase in the expression of this viral protein. When large T antigen is inactivated, the half-life of de novo-synthesized viral DNA is less than 12 h, suggesting that large T antigen may be responsible for the stability of the viral genomes as well as their synthesis. Surprisingly, at early times postinfection (0 to 48 h), when the essential function of large T antigen in transformation is expressed (as demonstrated in shift-up experiments with tsa mutants), the level of large T antigen is below the detection level and is at least 10-fold lower than the levels observed in permissive infections at the start of viral DNA synthesis. The difference in viral DNA at 37 and 33 degrees C allowed us to study its effect on transformation. Although an increase in transformation frequency is observed in wild-type A2 infections carried at 33 degrees C (frequencies two to three times higher than at 37 degrees C), this increase appears to be unrelated to the increase in viral DNA synthesis. Furthermore, the overall level of viral DNA and large T antigen in F-111 cells may not affect the integration of the viral genome, since the patterns of integration in cells transformed by wild-type A2 at 33 and 37 degrees C appear similar. The results are compatible with a role for large T antigen in integration-transformation which is not simply to amplify the viral genome to enhance the probability of its integration.  相似文献   

2.
3.
A well-characterized SV40-transformed Swiss 3T3 line, SV101, and its revertants were tested for the ability to grow in reduced Ca++ (0.01 mM). Transformants and revertants did not differ from the parent 3T3 line in their Ca++ requirements. All three classes of cells grew less well in low Ca++ than in regular Ca++ (2.0 mM). SV40 transformants were then selected for the ability to grow in reduced Ca++. This new class of transformants was found to grow in 1% serum, grow in soft agarose, have a reorganized actin cytoskeleton, and express viral T antigens, as well as grow well in low Ca++. One of the selected clones was found to be T antigen-negative, yet was transformed in the serum, anchorage, actin, and Ca++ assays. It is possible that this clone was a spontaneous transformant. However, Southern blot analysis revealed the presence of integrated SV40 DNA. In addition, this analysis revealed the absence of an intact early region fragment, which codes for the viral T antigens. One explanation of this result may be that the mechanism of viral transformation for growth in low Ca++ involves viral-host DNA interactions that may not require a fully functional T antigen. In this case SV40 integration may be acting as a nonspecific cellular mutagen.  相似文献   

4.
A recombinant plasmid based on pBR322 has been constructed which carries the replicator proximal early region of SV40 DNA, including the viral origin of replication (ORI). It lacks a major part of the tumour antigen 3'-coding region, the large T-antigen termination codon and the polyadenylation site. The recombinant plasmid was transferred together with the herpes simplex virus thymidine kinase gene, as a selectable marker into mouse LTK- cells. Integration and expression of the cloned SV40 gene fragment in TK+ transformants could be demonstrated by DNA restriction and blot hybridization and by immunofluorescence techniques.  相似文献   

5.
Transformed cells obtained after transfecting FR3T3 rat fibroblasts with DNA of bovine papilloma virus type 1 ( BPV1 ) maintained only free copies of the viral genome. Transfection with BPV1 DNA inserted in a bacterial plasmid (pBR322 or pML2 ) did not produce transformants at a detectable rate, unless the viral sequences had been first excised from the plasmid. In contrast, transfer of the same plasmids by polyethylene glycol-induced fusion of bacterial protoplasts with FR3T3 rat or C127 mouse cells led to significant transformation frequencies. A total of eight cell lines were studied, three rat and five mouse transformants, obtained with various BPV1 - pML2 recombinants. In all cell lines, both BPV1 and plasmid sequences were maintained as non-integrated molecules, predominantly as oligomeric forms of the transforming DNA. In the three rat transformants and in two of the mouse lines, parts of the non-transforming viral region and some bacterial sequences were deleted. In the remaining three mouse lines, the monomeric repeat was a non-rearranged plasmid molecule which could be re-established as a plasmid in Escherichia coli after cleavage with "one-cut" restriction endonucleases and circularization of the molecule.  相似文献   

6.
A small subclass of SV40 T antigen binds to the viral origin of replication   总被引:32,自引:0,他引:32  
A Scheller  L Covey  B Barnet  C Prives 《Cell》1982,29(2):375-383
We examined the affinities of SV40 large T antigen for unique viral DNA sequences by binding SV40 Bst NI DNA fragments in extracts of infected or transformed cells, and then immunoprecipitating the T antigen-DNA complex. The G fragment, which spans the viral origin of replication (ori) was quantitatively bound to T antigen. A T-antigen-specific monoclonal antibody (McI 7), which recognized only 5%-10% of the T antigen from infected or transformed cells, immunoprecipitated the majority of the ori-binding activity. This suggests that only a minor subclass of wild-type T antigen is active in binding to the origin. C6 cells contain a replication-defective mutant T antigen that when tested in the DNA-binding immunoassay, showed no affinity for the ori fragment. McI 7 not only failed to immunoprecipitate ori binding in C6 cells, but also did not detect any labeled C6 T antigen whatever. Thus McI 7 recognizes an immunologically distinct subset of wild-type 7 antigen that comprises the origin-binding form of the viral protein, which is absent in the C6 T antigen population. McI 122, which recognizes a 53 kilodalton host protein that complexes with T antigen, immunoprecipitated ori-binding activity from extracts of infected or transformed cells, but not from C6 cells. Thus wild-type T antigen can bind ori sequences even when complexed to the host protein. These data suggest that T antigen consists of different subpopulations with different functions.  相似文献   

7.
A series of 10 Fischer rat transformed clonal cell lines were independently obtained in infections with a defective polyomavirus containing a scrambled genome except for an intact middle and small T-antigen-coding region. These cells synthesize middle and small T antigens; no fragment of large T antigen can be detected in any of them. The transformed phenotype of this set of cell lines (designated LT-) has been studied with respect to serum dependence, saturation density, and anchorage independence and compared with the phenotype of a set of six transformants (designated LT+) which synthesize detectable to high levels of shortened or normal-sized large T antigen. Both the LT+ and the LT- groups of polyomavirus transformants display a range of transformed phenotypes. These ranges overlap, and the variations within each group are larger than the variations between the two groups. Thus, the results suggest that, for established Fischer rat fibroblasts, the maintenance of any of the three phenotypes tested and, in particular, of serum independence is not necessarily correlated with the levels of large T antigen or fragments thereof.  相似文献   

8.
Simian virus 40 (SV40) transformed V 11 F 1 clone 1 subclone 7 rat cells (subclone 7) do not synthesize normal-size large T antigen (M(r), 90,000); instead, they produce a 115,000 M(r) super T antigen (115K super T antigen). This super T antigen is SV40 virus coded, and its synthesis results from rearrangement and amplification of integrated viral DNA sequences in subclone 7 (May et al., Nucleic Acids Res. 9:4111-4128, 1981). In this study the functional activities of 115K super T antigen were compared with the functional activities of SV40 large T antigen. Transfection experiments were performed with (i) cosmid SVE 5 Kb and plasmid pSVsT, both containing the super T antigen gene and (ii) plasmids pSV1 and pSV40, both containing the large T antigen gene. Transfection of pSVsT DNA or SVE 5 Kb DNA into secondary cultures of rat kidney cells induced the formation of transformed cell foci with an efficiency that was about 50% of the efficiency of pSV1 DNA or pSV40 DNA. Concomitant with the transforming activity, two other activities were also retained by super T antigen, namely, the ability to enhance the level of host cellular protein p53 and the capacity to bind to p53. In contrast, pSVsT and SVE 5 Kb DNAs were markedly deficient in the capacity to support tsA58 DNA replication in CV1-P cells at a nonpermissive temperature (41 degrees C), as shown by cotransfection experiments. The yield of virus produced in these experiments was 400-fold less than the yield obtained in parallel experiments with pSV40 or pSV1. However, SVE 5 Kb and pSVsT have a functional SV40 replication origin, as shown by their efficient replication in COS 1 cells which provided functional large T antigen. Super T antigen also possesses a specific affinity for sequences of SV40 viral origin. Our results suggest that under certain conditions, evolutionary changes in T antigen take place and that these changes could be restricted to the phenotypic requirement of maintaining a structure that is able to induce cell transformation, to form a complex with p53, and to enhance the cellular level of p53. Therefore, there appears to be a close relationship among the activities of T antigen involved in transforming cells, in binding to p53, and in enhancing the p53 cellular level. Moreover, this set of activities appears to be separable from the replicative ability of T antigen, based on the observation that 115K super T antigen is markedly defective for initiating viral DNA synthesis.  相似文献   

9.
We purified a fragment of mouse DNA to which the large T protein of polyoma virus was bound in chromatin prepared from transformed mouse cells. This sequence, which is not repeated to a measurable extent within the mouse genome, does not show any significant homology to the viral ori region, except in a short region, which comprises a sequence related to the consensus for recognition by large T proteins ((A,T)GPuGGC). This region of pCG4 was confirmed by in vitro binding assays to be essential for T antigen binding.  相似文献   

10.
We have characterized the viral sequences integrated in a polyomavirus-transformed mouse cell line, Py-3T3 (clone Py-6), and followed their excision and packaging upon superinfection. The polyomavirus sequences contained in Py-6 cells are present as a single insert of nonidentical tandem copies which includes, in addition to a normal middle T-antigen-coding region, some very rearranged sequences. Infection of Py-6 cells with polyomavirus strains encoding a normal large T antigen leads to the reproducible recovery in the resulting viral stock of specific defective viral genomes. The defective genomes contain a wild-type coding region for middle and small T antigens and intact viral origin and enhancer sequences. The remainder of the viral genome is rearranged or lost, so that there is no capacity to code for large T antigen or viral capsid proteins. The recovered defective sequences are also found integrated in Py-6 genomic DNA. Presumably, in infections of Py-6 cells, large T antigen, provided by the superinfecting virus, amplifies and excises the integrated viral sequences. The superinfecting helper virus must also produce viral capsids for packaging of the defective viral DNA and thus provides a means to shuttle the defective sequences from the mouse cells into other hosts, such as rat cells. In the latter host, the defective sequences are able to induce transformation.  相似文献   

11.
We have previously cloned the gene encoding a 115,000-Mr super T antigen (115K super T antigen), an elongated form of the Simian virus 40 large T antigen, originating from the rat cell line V 11 F1 clone 1, subclone 7 (May et al., J. Virol. 45:901-913, 1983). DNA sequence analysis has shown that the 115K super T antigen gene contains notably an in-phase duplication of a sequence located in the region of tsA mutations. We have also shown that the 115K super T antigen gene is able to induce the formation of transformed foci in transfected rat cells. After rat cell cultures were transfected with the cloned gene encoding 115K super T antigen, we obtained a large number of transformants as reported in this paper. In these transformants, we detected a very high frequency of new T antigen variants, as shown by immunoprecipitation of the cell extracts with anti-simian virus 40 tumor serum followed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. Based on these results and all of the data presently available, it appears likely that the input plasmid or cosmid DNAs containing the cloned gene were first subjected to recombination events that yield new variant T antigen genes before these recombinant genes become integrated. The new variant T antigens observed in the transformants were predominantly those comigrating with normal-size large T antigen. In fact, these latter variants appeared to be indistinguishable from wild-type large T antigen as judged by restriction mapping by Southern blotting of the total genomic DNA of the transformants. Models of intermolecular or intramolecular homologous recombination occurring between or within the input plasmid or input cosmid DNA molecules are proposed to account for the formation of such revertants.  相似文献   

12.
The growth properties of hamster cells transformed by wild-type Simian virus 40 (SV40), by early SV40 temperature-sensitive mutants of the A complementation group, and by spontaneous revertants of these mutants were studied. All of the tsA mutant-transformed cells were temperature sensitive in their ability to form clones in soft agar and on monolayers of normal cells except for CHLA-30L1, which was not temperature sensitive in the latter property. All cells transformed by stable revertants of well-characterized tsA mutants possessed certain growth properties in common with wild-type-transformed cells at both temperatures. Virus rescued from tsA transformants including CHLA30L1 was temperature sensitive for viral DNA replication, whereas that rescued from revertant and wild-type transformants was not thermolabile in this regard. T antigen present in crude extracts of tsA-transformed cells including CHLA30L1, grown at 33 degreeC, was temperature sensitive by in vitro immunoassay, whereas that from wild-type-transformed cells was relatively stable. T antigen from revertant transformants was more stable than the tsA protein. Partially purified T antigen from revertant-transformed cells was nearly as stable as wild-type antigen in its ability to bind DNA after heating at 44 degrees C, whereas T antigen from tsA30 mutant-transformed cells was relatively thermolabile. These results further indicate that T antigen is a product of the SV40 A gene. Significantly more T antigen was found in extracts of CHLA30L1 grown to high density at the nonpermissive temperature than in any other tsA-transformed cell similarly grown. This is consistent with the suggestion that the amount of T antigen synthesized in CHLA30L1 is large enoughto allow partial expression of the transformed phenotype at the restrictive temperature. Alternatively, the increase in T antigen concentration may be secondary to one or more genetic alterations that independently affect the transformed phenotype of these cells.  相似文献   

13.
By using a DNA fragment immunoassay, the binding of simian virus 40 (SV40) and polyomavirus (Py) large tumor (T) antigens to regulatory regions at both viral origins of replication was examined. Although both Py T antigen and SV40 T antigen bind to multiple discrete regions on their proper origins and the reciprocal origin, several striking differences were observed. Py T antigen bound efficiently to three regions on Py DNA centered around an MboII site at nucleotide 45 (region A), a BglI site at nucleotide 92 (region B), and another MboII site at nucleotide 132 (region C). Region A is adjacent to the viral replication origin, and region C coincides with the major early mRNA cap site. Weak binding by Py T antigen to the origin palindrome centered at nucleotide 3 also was observed. SV40 T antigen binds strongly to Py regions A and B but only weakly to region C. This weak binding on region C was surprising because this region contains four tandem repeats of GPuGGC, the canonical pentanucleotide sequence thought to be involved in specific binding by T antigens. On SV40 DNA, SV40 T antigen displayed its characteristic hierarchy of affinities, binding most efficiently to site 1 and less efficiently to site 2. Binding to site 3 was undetectable under these conditions. In contrast, Py T antigen, despite an overall relative reduction of affinity for SV40 DNA, binds equally to fragments containing each of the three SV40 binding sites. Py T antigen, but not SV40 T antigen, also bound specifically to a region of human Alu DNA which bears a remarkable homology to SV40 site 1. However, both tumor antigens fail to precipitate DNA from the same region which has two direct repeats of GAGGC. These results indicate that despite similarities in protein structure and DNA sequence, requirements of the two T antigens for pentanucleotide configuration and neighboring sequence environment are different.  相似文献   

14.
A replication-defective Simian virus 40 genome, with a deletion of about 120 nucleotides in the region encoding the N-terminal fourth of the large T antigen, has been isolated from the DNA of Simian cells transformed by SV40. Both the original transformants, and the murine transformants obtained by transfection with this cloned mutant DNA, produced a large T antigen displaying in immunofluorescence an exclusively cytoplasmic localization. The protein apparent molecular mass (83 kDa) was about 6% smaller than that of normal karyophilic large T. Restriction analysis showed that the deletion eliminated two close HinfI sites, at nucleotides 4459 and 4376 (map unit 0.50).  相似文献   

15.
Simian virus 40 large T antigen is a multifunctional protein that is encoded by the early region of the viral genome. We constructed fusion proteins between simian virus 40 large T antigen and beta-galactosidase by cloning HindIII fragments A and D of the virus into the HindIII sites of expression vectors pUR290, pUR291, and pUR292. Large amounts of the fusion protein were synthesized when the DNA fragment encoding part of simian virus 40 large T antigen was in frame with the lacZ gene of the expression vector. Using Western blotting and a competition radioimmunoassay, we assessed the binding of existing anti-T monoclonal and polyclonal antibodies to the two fusion proteins. Several monoclonal antibodies reacted with the protein encoded by the fragment A construction, but none reacted with the protein encoded by the fragment D construction. However, mice immunized with pure beta-galactosidase-HindIII fragment D fusion protein produced good levels of anti-T antibodies, which immunoprecipitated simian virus 40 large T antigen from lytically infected cells, enabling derivation of monoclonal antibodies to this region of large T antigen. Therefore, the fusion proteins allowed novel epitopes to be discovered on large T antigen and permitted the precise localization of epitopes recognized by existing antibodies. The same approach can also be used to produce antibodies against defined regions of any gene.  相似文献   

16.
Group I host range (hr) mutants of adenovirus type 5 are unable to transform rat embryo or rat embryo brain cells but induce an abnormal transformation of baby rat kidney cells. We established several transformed rat kidney cell lines and characterized them with respect to the transformed phenotype and the structure of the integrated viral DNA. The hr mutant-transformed cells, unlike wild-type virus transformants, were fibroblastic rather than epithelial, failed to grow in soft agar, and were also less tumorigenic in nude mice. Studies on the structure of the integrated viral DNA sequences showed that hr-transformed cells always contained the left end of the adenovirus DNA, but the size of the integrated DNA fragment varied among different lines, and a high percentage of the lines contained the entire viral genome colinearly integrated. The patterns of integration were maintained after prolonged growth in culture and after subcloning. Attempts to rescue infectious virus from lines which contained the entire genome were unsuccessful. Using immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, we analyzed the viral proteins expressed in hr-transformed cells. Results of these studies indicated that, like wild type-transformed cells, hr transformants expressed E1B proteins of molecular weight 58,000 and 19,000.  相似文献   

17.
The replication region (oriC) of the Spiroplasma citri chromosome has been recently sequenced, and a 2-kbp DNA fragment was characterized as an autonomously replicating sequence (F. Ye, J. Renaudin, J. M. Bové, and F. Laigret, Curr. Microbiol. 29:23-29, 1994). In the present studies, we have combined this DNA fragment, containing the dnaA gene and the flanking dnaA boxes, with a ColE1-derived Escherichia coli replicon and the Tet M determinant, which confers resistance to tetracycline. The recombinant plasmid, named pBOT1, was introduced into S. citri cells, in which it replicated. Plasmid pBOT1 was shuttled from E. coli to S. citri and back to E. coli. In S. citri, replication of pBOT1 did not require the presence of a functional dnaA gene on the plasmid. However, the dnaA box region downstream of the dnaA gene was essential. Upon passaging of the S. citri transformants, the plasmid integrated into the spiroplasmal host chromosome by recombination at the replication origin. The integration process led to duplication of the oriC sequences. In contrast to the integrative pBOT1, plasmid pOT1, which does not contain the E. coli replicon, was stably maintained as a free extrachromosomal element. Plasmid pOT1 was used as a vector to introduce into S. citri the G fragment of the cytadhesin P1 gene of Mycoplasma pneumoniae and the spiralin gene of Spiroplasma phoeniceum. The recombinant plasmids, pOTPG with the G fragment and pOTPS with the spiralin gene, were stably maintained in spiroplasmal transformants. Expression of the heterologous S. phoeniceum spiralin in S. citri was demonstrated by Western immunoblotting.  相似文献   

18.
Pulse-labeled simian virus 40 (SV40) chromatin as well as uniformly labeled viral chromatin are immunoprecipitable by an SV40-specific tumor antiserum and therefore contain bound tumor antigen (T antigen). Single-stranded calf thymus DNA, immobilized on cellulose, competes effectively for T antigen binding with uniformly labeled nonreplicating, but not with pulse-labeled replicating, chromatin. Furthermore, T antigen dissociates in 0.5 M NaCl from nonreplicating chromatin and from purified SV40 DNA, whereas most T antigen remains associated with replicating chromatin even in the presence of 1.2 to 1.5 M NaCl. We used filtration through DNA-cellulose columns and treatment with high salt to prepare pulse-labeled immunoreactive viral chromatin. The viral DNA was digested before, and in other experiments after, immunoprecipitation with the restriction endonuclease HindIII. We found that SV40 DNA sequences, most probably representing the entire genome, remain in the immunoprecipitate after HindIII digestion, indicating an association of T antigen with origin-distal sections of replicating viral DNA. The results suggest that T antigen in replicating chromatin may be bound to regions close to replicating points. We performed control experiments with in vitro-formed complexes of T antigen and SV40 DNA. When these complexes were immunoprecipitated and HindIII digested we found, in agreement with previous studies, that only the origin containing the HindIII C fragment carried bound T antigen.  相似文献   

19.
The subnuclear distribution of simian virus 40 large T antigen within nuclei of transformed Cos and C6 monkey cells was examined. Cos cells express wild-type T antigen but lack viral sequences required for DNA replication, whereas C6 cells contain a functional viral origin but express a replication-defective mutant T antigen which is unable to bind specifically to viral DNA. Discrete subpopulations of T antigen were isolated from the soluble nucleoplasm, chromatin, and nuclear matrix of both cell lines. Although only a small quantity (2 to 12%) of the total nuclear T antigen from Cos cells was associated with the nuclear matrix, a high proportion (25 to 50%) of C6 T antigen was bound to this structure. Results obtained from lytically infected monkey cells showed that early in infection, before viral replication was initiated, a higher proportion (22%) of T antigen was found associated with the nuclear matrix compared with amounts found associated with this structure later in infection (5 to 8%). These results suggest that an increased association of T antigen with this structure is not correlated with viral replication. T antigen isolated from the C6 nuclear matrix was more highly phosphorylated than was soluble C6 T antigen and was capable of binding to the host p53 protein. C6 DNA contains three mutations: two corresponding to N-terminal changes at amino acid positions 30 and 51 and a third located internally at amino acid position 153. By analysis of the subnuclear distribution of T antigen from rat cells transformed by C6 submutant T antigens, it was determined that one or both of the mutations at the NH2 terminus are responsible for the increased quantity of C6 T antigen associated with the nuclear matrix. These results suggest that neither a functional viral DNA replication origin nor the origin binding property of T antigen is required for association of this protein with the nuclear matrix.  相似文献   

20.
Simian virus 40 cRNA was transcribed in vitro from the early viral DNA strand. The RNA was injected through glass capillaries into the nuclei of monkey cells. After a 2-h incubation, the RNAs were extracted and hybridized to single-stranded simian virus 40 DNA sequences contained in a bacteriophage M13 vector. Electron microscopy revealed processed cRNAs with splice loops in the region of the intron of large T antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号