首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
High-throughput multi-antigen microfluidic fluorescence immunoassays   总被引:1,自引:0,他引:1  
Here we describe the development of a high-throughput multi-antigen microfluidic fluorescence immunoassay system. A 100-chamber polydimethylsiloxane (PDMS) chip performs up to 5 tests for each of 10 samples. In this particular study system, the specificity of detection was demonstrated, and calibration curves were produced for C-reactive protein (CRP), prostate-specific antigen (PSA), ferritin, and vascular endothelial growth factor (VEGF). The measurements show sensitivity at and below clinically normal levels (with a signal-to-noise ratio >8 at as low as 10 pM antigen concentration). The chip uses 100 nL per sample for all tests. The developed system is an important step toward derivative immunoassay applications in scientific research and "point-of-care" testing in medicine.  相似文献   

2.
3.
Understanding the genetics of how organisms adapt to changing environments is a fundamental topic in modern evolutionary ecology. The field is currently progressing rapidly because of advances in genomics technologies, especially DNA sequencing. The aim of this review is to first briefly summarise how next generation sequencing (NGS) has transformed our ability to identify the genes underpinning adaptation. We then demonstrate how the application of these genomic tools to ecological model species means that we can start addressing some of the questions that have puzzled ecological geneticists for decades such as: How many genes are involved in adaptation? What types of genetic variation are responsible for adaptation? Does adaptation utilise pre-existing genetic variation or does it require new mutations to arise following an environmental change?  相似文献   

4.
A new zinc oxide nanoparticles/chitosan/carboxylated multiwall carbonnanotube/polyaniline (ZnO-NPs/CHIT/c-MWCNT/PANI) composite film has been synthesized on platinum (Pt) electrode using electrochemical techniques. Three enzymes, creatinine amidohydrolase (CA), creatine amidinohydrolase (CI) and sarcosine oxidase (SO) were immobilized on ZnO-NPs/CHIT/c-MWCNT/PANI/Pt electrode to construct the creatinine biosensor. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS). The enzyme electrode detects creatinine level as low as 0.5 μM at a signal to noise ratio of 3 within 10s at pH 7.5 and 30°C. The fabricated creatinine biosensor showed linear working range of 10-650 μM creatinine with a sensitivity of 0.030 μA μM(-1)cm(-2). The biosensor shows only 15% loss of its initial response over a period of 120 days when stored at 4°C. The fabricated biosensor was successfully employed for determination of creatinine in human blood serum.  相似文献   

5.
6.
7.
Hallmarks of cancer: the next generation   总被引:29,自引:0,他引:29  
Hanahan D  Weinberg RA 《Cell》2011,144(5):646-674
The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.  相似文献   

8.
It is the ultimate goal of tissue engineering: an autologous tissue engineered vascular graft (TEVG) that is immunologically compatible, nonthrombogenic, and can grow and remodel. Currently, native vessels are the preferred vascular conduit for procedures such as coronary artery bypass (CABG) or peripheral bypass surgery. However, in many cases these are damaged, have already been harvested, or are simply unusable. The use of synthetic conduits is severely limited in smaller diameter vessels due to increased incidence of thrombosis, infection, and graft failure. Current research has therefore energetically pursued the development of a TEVG that can incorporate into a patient's circulatory system, mimic the vasoreactivity and biomechanics of the native vasculature, and maintain long-term patency.  相似文献   

9.
10.
11.
Baird SJ 《Current biology : CB》2012,22(6):R182-R183
Oak forests support a rich ecology of fellow travellers, but how do these fare when the forests move during glacial cycles? The answers revealed by a new study are important for ecology, but being able to get answers at all highlights a turning point in evolutionary inference.  相似文献   

12.
Immunologists need to establish a vibrant dialogue with young people. This is not only important for the continuation and progress of biomedical research, but it can also contribute to the fight against diseases such as HIV/AIDS and can help young people to make informed decisions about lifestyle, medical treatment and ethical issues. Good communication skills are crucial to any scientific career, and the lessons learned from talking with non-scientists can also be useful when writing scientific papers and grants. This article is a personal account of one scientist's experience of communicating biomedical science to young people.  相似文献   

13.
Biological electrosprays are rapidly becoming a robust means by which to engineer living organisms for applications ranging from tissue repair to developmental biology. We previously reported the ability to electrospray living organisms without compromising their viability, but found it challenging to achieve stability in the jetting of these organisms as a result of the chemical properties of the living cellular suspensions. Jet stability is required for the generation of a near-mono distribution of droplets, which is necessary for the development of electrospray technology as a "drop and place" biotechnique. Recently, we determined the conditions needed to achieve jet stability and were able to generate droplets with a near-mono distribution (<50 microm). In this communication, we elucidate the relationship between jet behaviour and droplet size under stable jetting conditions, with a view to further reducing the droplet size to deposit a single living cell within a droplet. We believe that this level of resolution will make electrospray jetting superior amongst the jet-based biotechnologies presently being developed for the engineering of biological architectures comprised of living cells.  相似文献   

14.
Recent applications of affinity mass spectrometry into clinical laboratories brought a renewed interest in immunoaffinity mass spectrometry as a more specific affinity method capable of selectively targeting and studying protein biomarkers. In mass spectrometry-based immunoassays, proteins are affinity retrieved from biological samples via surface-immobilized antibodies, and are then detected via mass spectrometric analysis. The assays benefit from dual specificity, which is brought about by the affinity of the antibody and the protein mass readout. The mass spectrometry aspect of the assays enables single-step detection of protein isoforms and their individual quantification. This review offers a comprehensive review of mass spectrometry-based immunoassays, from historical perspectives in the development of the immunoaffinity mass spectrometry, to current applications of the assays in clinical and population proteomic endeavors. Described in more detail are two types of mass spectrometry-based immunoassays, one of which incorporates surface plasmon resonance detection for protein quantification. All mass spectrometry-based immunoassays offer high-throughput targeted protein investigation, with clear implications in clinical research, encompassing biomarker discovery and validation, and in diagnostic settings as the next-generation immunoassays.  相似文献   

15.
Schon EA  Przedborski S 《Neuron》2011,70(6):1033-1053
Adult-onset neurodegenerative disorders are disabling and often fatal diseases of the nervous system whose underlying mechanisms of cell death remain unknown. Defects in mitochondrial respiration had previously been proposed to contribute to the occurrence of many, if not all, of the most common neurodegenerative disorders. However, the discovery of genes mutated in hereditary forms of these enigmatic diseases has additionally suggested defects in mitochondrial dynamics. Such disturbances can lead to changes in mitochondrial trafficking, in interorganellar communication, and in mitochondrial quality control. These new mechanisms by which mitochondria may also be linked to neurodegeneration will likely have far-reaching implications for our understanding of the pathophysiology and treatment of adult-onset neurodegenerative disorders.  相似文献   

16.
Prebiotics and synbiotics: towards the next generation   总被引:9,自引:0,他引:9  
Recent research in the area of prebiotic oligosaccharides and synbiotic combinations with probiotics is leading towards a more targeted development of functional food ingredients. Improved molecular techniques for analysis of the gut microflora, new manufacturing biotechnologies, and increased understanding of the metabolism of oligosaccharides by probiotics are facilitating development. Such developments are leading us to the time when we will be able to rationally develop prebiotics and synbiotics for specific functional properties and health outcomes.  相似文献   

17.
Recent applications of affinity mass spectrometry into clinical laboratories brought a renewed interest in immunoaffinity mass spectrometry as a more specific affinity method capable of selectively targeting and studying protein biomarkers. In mass spectrometry-based immunoassays, proteins are affinity retrieved from biological samples via surface-immobilized antibodies, and are then detected via mass spectrometric analysis. The assays benefit from dual specificity, which is brought about by the affinity of the antibody and the protein mass readout. The mass spectrometry aspect of the assays enables single-step detection of protein isoforms and their individual quantification. This review offers a comprehensive review of mass spectrometry-based immunoassays, from historical perspectives in the development of the immunoaffinity mass spectrometry, to current applications of the assays in clinical and population proteomic endeavors. Described in more detail are two types of mass spectrometry-based immunoassays, one of which incorporates surface plasmon resonance detection for protein quantification. All mass spectrometry-based immunoassays offer high-throughput targeted protein investigation, with clear implications in clinical research, encompassing biomarker discovery and validation, and in diagnostic settings as the next-generation immunoassays.  相似文献   

18.
A microfluidic channel made entirely out of polyethylene glycol (PEG), not PEG coating to silicon or polydimethylsiloxane (PDMS) surface, was fabricated and tested for its reusability in particle immunoassays and passive protein fouling, at relatively high target concentrations (1 mg ml-1). The PEG devices were reusable up to ten times while the oxygen-plasma-treated polydimethyl siloxane (PDMS) device could be reused up to four times and plain PDMS were not reusable. Liquid was delivered spontaneously via capillary action and complicated bonding procedure was not necessary. The contact angle analysis revealed that the water contact angle on microchannel surface should be lower than ~60°, which are comparable to those on dried protein films, to be reusable for particle immunoassays and passive protein fouling.  相似文献   

19.
《Nature biotechnology》2006,24(11):1300
Second-generation biologics are now entering the marketplace.  相似文献   

20.
Genomic studies have been revolutionized by the use of next generation sequencing (NGS), which delivers huge amounts of sequence information in a short span of time. The number of applications for NGS is rapidly expanding and significantly transforming many areas of life sciences. The field of antibody research and discovery is no exception. Several recent studies have harnessed the power of NGS for analyzing natural or synthetic immunoglobulin repertoires with unprecedented resolution and exploring alternative paths for antibody discovery. Thus, appreciating and then exploiting these advances is essential for staying at the edge of antibody innovation.Key words: next generation sequencing, phage display, hybridoma, antibody discovery, in vitro selection, immunization  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号