首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
BEST: binding-site estimation suite of tools   总被引:4,自引:0,他引:4  
  相似文献   

4.
5.
6.
Motif discovery methods play pivotal roles in deciphering the genetic regulatory codes (i.e., motifs) in genomes as well as in locating conserved domains in protein sequences. The Expectation Maximization (EM) algorithm is one of the most popular methods used in de novo motif discovery. Based on the position weight matrix (PWM) updating technique, this paper presents a Monte Carlo version of the EM motif-finding algorithm that carries out stochastic sampling in local alignment space to overcome the conventional EM's main drawback of being trapped in a local optimum. The newly implemented algorithm is named as Monte Carlo EM Motif Discovery Algorithm (MCEMDA). MCEMDA starts from an initial model, and then it iteratively performs Monte Carlo simulation and parameter update until convergence. A log-likelihood profiling technique together with the top-k strategy is introduced to cope with the phase shifts and multiple modal issues in motif discovery problem. A novel grouping motif alignment (GMA) algorithm is designed to select motifs by clustering a population of candidate local alignments and successfully applied to subtle motif discovery. MCEMDA compares favorably to other popular PWM-based and word enumerative motif algorithms tested using simulated (l, d)-motif cases, documented prokaryotic, and eukaryotic DNA motif sequences. Finally, MCEMDA is applied to detect large blocks of conserved domains using protein benchmarks and exhibits its excellent capacity while compared with other multiple sequence alignment methods.  相似文献   

7.
Finding motifs using random projections.   总被引:19,自引:0,他引:19  
  相似文献   

8.
We present a new computational method for solving a classical problem, the identification problem of cis-regulatory motifs in a given set of promoter sequences, based on one key new idea. Instead of scoring candidate motifs individually like in all the existing motif-finding programs, our method scores groups of candidate motifs with similar sequences, called motif closures, using a P-value, which has substantially improved the prediction reliability over the existing methods. Our new P-value scoring scheme is sequence length independent, hence allowing direct comparisons among predicted motifs with different lengths on the same footing. We have implemented this method as a Motif Recognition Computer (MREC) program, and have extensively tested MREC on both simulated and biological data from prokaryotic genomes. Our test results indicate that MREC can accurately pick out the actual motif with the correct length as the best scoring candidate for the vast majority of the cases in our test set. We compared our prediction results with two motif-finding programs Cosmo and MEME, and found that MREC outperforms both programs across all the test cases by a large margin. The MREC program is available at http://csbl.bmb.uga.edu/~bingqiang/MREC1/.  相似文献   

9.
Position weight matrix-based statistical modeling for the identification and characterization of motif sites in a set of unaligned biopolymer sequences is presented. This paper describes and implements a new algorithm, the Stochastic EM-type Algorithm for Motif-finding (SEAM), and redesigns and implements the EM-based motif-finding algorithm called deterministic EM (DEM) for comparison with SEAM, its stochastic counterpart. The gold standard example, cyclic adenosine monophosphate receptor protein (CRP) binding sequences, together with other biological sequences, is used to illustrate the performance of the new algorithm and compare it with other popular motif-finding programs. The convergence of the new algorithm is shown by simulation. The in silico experiments using simulated and biological examples illustrate the power and robustness of the new algorithm SEAM in de novo motif discovery.  相似文献   

10.
11.
MOTIVATION: Identification of motifs is one of the critical stages in studying the regulatory interactions of genes. Motifs can have complicated patterns. In particular, spaced motifs, an important class of motifs, consist of several short segments separated by spacers of different lengths. Locating spaced motifs is not trivial. Existing motif-finding algorithms are either designed for monad motifs (short contiguous patterns with some mismatches) or have assumptions on the spacer lengths or can only handle at most two segments. An effective motif finder for generic spaced motifs is highly desirable. RESULTS: This article proposes a novel approach for identifying spaced motifs with any number of spacers of different lengths. We introduce the notion of submotifs to capture the segments in the spaced motif and formulate the motif-finding problem as a frequent submotif mining problem. We provide an algorithm called SPACE to solve the problem. Based on experiments on real biological datasets, synthetic datasets and the motif assessment benchmarks by Tompa et al., we show that our algorithm performs better than existing tools for spaced motifs with improvements in both sensitivity and specificity and for monads, SPACE performs as good as other tools. AVAILABILITY: The source code is available upon request from the authors.  相似文献   

12.
13.
14.
Finding conserved motifs in genomic sequences represents one of essential bioinformatic problems. However, achieving high discovery performance without imposing substantial auxiliary constraints on possible motif features remains a key algorithmic challenge. This work describes BAMBI-a sequential Monte Carlo motif-identification algorithm, which is based on a position weight matrix model that does not require additional constraints and is able to estimate such motif properties as length, logo, number of instances and their locations solely on the basis of primary nucleotide sequence data. Furthermore, should biologically meaningful information about motif attributes be available, BAMBI takes advantage of this knowledge to further refine the discovery results. In practical applications, we show that the proposed approach can be used to find sites of such diverse DNA-binding molecules as the cAMP receptor protein (CRP) and Din-family site-specific serine recombinases. Results obtained by BAMBI in these and other settings demonstrate better statistical performance than any of the four widely-used profile-based motif discovery methods: MEME, BioProspector with BioOptimizer, SeSiMCMC and Motif Sampler as measured by the nucleotide-level correlation coefficient. Additionally, in the case of Din-family recombinase target site discovery, the BAMBI-inferred motif is found to be the only one functionally accurate from the underlying biochemical mechanism standpoint. C++ and Matlab code is available at http://www.ee.columbia.edu/~guido/BAMBI or http://genomics.lbl.gov/BAMBI/.  相似文献   

15.
16.
17.
Quantifying similarity between motifs   总被引:2,自引:0,他引:2  
A common question within the context of de novo motif discovery is whether a newly discovered, putative motif resembles any previously discovered motif in an existing database. To answer this question, we define a statistical measure of motif-motif similarity, and we describe an algorithm, called Tomtom, for searching a database of motifs with a given query motif. Experimental simulations demonstrate the accuracy of Tomtom's E values and its effectiveness in finding similar motifs.  相似文献   

18.
19.
20.
MOTIVATION: The automatic identification of over-represented motifs present in a collection of sequences continues to be a challenging problem in computational biology. In this paper, we propose a self-organizing map of position weight matrices as an alternative method for motif discovery. The advantage of this approach is that it can be used to simultaneously characterize every feature present in the dataset, thus lessening the chance that weaker signals will be missed. Features identified are ranked in terms of over-representation relative to a background model. RESULTS: We present an implementation of this approach, named SOMBRERO (self-organizing map for biological regulatory element recognition and ordering), which is capable of discovering multiple distinct motifs present in a single dataset. Demonstrated here are the advantages of our approach on various datasets and SOMBRERO's improved performance over two popular motif-finding programs, MEME and AlignACE. AVAILABILITY: SOMBRERO is available free of charge from http://bioinf.nuigalway.ie/sombrero SUPPLEMENTARY INFORMATION: http://bioinf.nuigalway.ie/sombrero/additional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号