首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Proton efflux during Ca2+ transport into sarcoplasmic reticulum vesicles was examined. Although a rapid H+ ejection was observed during the initial phase of Ca2+ uptake and the amount of the liberated H+ was more than that due to hydrolysis of ATP, generation of a pH difference as a result of the H+ efflux could not be detected by direct pH measurement with a pH meter. Alkalinization of the inside of the vesicles during Ca2+ uptake was more precisely examined by flow dialysis assay and a significant uptake of acetate or salicylate into the vesicles was found, suggesting the generation of a small pH difference across the SR membrane. From these results, it was concluded that counter-transport of H+ was operative in Ca2+ uptake but that only a relatively small pH difference was generated as a result of the H+ efflux. The intrinsic buffering capacity of sarcoplasmic reticulum vesicles was measured and a relatively large value (130 nmol H+/pH unit/mg at pH 6.2) was obtained.  相似文献   

2.
Studies with the use of [3H]acetate as an delta pH-indicator have established that pH in the native vesicles of sarcoplasmic reticulum is by 0.54 unit lower, than its extra-molecular value (6.5 units). The double [3H] and radioactive [3H] and [45Ca2+] labels were used to show that Ca2+ transport into the sarcoplasmic reticulum vesicles is accompanied by an increase in intravesicular pH. Carbonylcyanide-m-chlorophenylhydrazone, a protonophore, stimulates the equalization of the pH gradient (H+ removal) which is not accompanied by changes in the Ca2+ transport. In the presence of ionophore A23187 Ca2+ and [3H]acetate do not accumulate in vesicles in the ATP-dependent process. This indicates H+ removal from the vesicles only when there is the Ca2+ gradient creation and the absence of the close conjugation of Ca3+/2H+ realized by Ca2+-ATPase of sarcoplasmic reticulum.  相似文献   

3.
Calcium (Ca2+) is sequestered into vacuoles of oat root cells through a H+/Ca2+ antiport system that is driven by the proton-motive force of the tonoplast H+-translocating ATPase. The antiport has been characterized directly by imposing a pH gradient in tonoplast-enriched vesicles. The pH gradient was imposed by diluting K+-loaded vesicles into a K+-free medium. Nigericin induced a K+/H+ exchange resulting in a pH gradient of 2 (acid inside). The pH gradient was capable of driving 45Ca2+ accumulation. Ca2+ uptake was tightly coupled to H+ loss as increasing Ca2+ levels progressively dissipated the steady state pH gradient. Ca2+ uptake displayed saturation kinetics with a Km(app) for Ca2+ of 10 microM. The relative affinity of the antiporter for transport of divalent cations was Ca2+ greater than Sr2+ greater than Ba2+ greater than Mg2+. La3+ or Mn2+ blocked Ca2+ uptake possibly by occupying the Ca2+-binding site. Ruthenium red (I50 = 40 microM) and N,N'-dicyclohexylcarbodiimide (I50 = 3 microM) specifically inhibited the H+/Ca2+ antiporter. When driven by pH jumps, the H+/Ca2+ exchange generated a membrane potential, interior positive, as shown by [14C]SCN accumulation. Furthermore, Ca2+ uptake was stimulated by an imposed negative membrane potential. The results support a simple model of one Ca2+ taken up per H+ lost. The exchange transport can be reversed, as a Ca2+ gradient (Ca2+in greater than Ca2+out) was effective in forming a pH gradient (acid inside). We suggest that the H+/Ca2+ exchange normally transports Ca2+ into the vacuole; however, under certain conditions, Ca2+ may be released into the cytoplasm via this antiporter.  相似文献   

4.
Ca2+ transport by sarcoplasmic reticulum vesicles was examined by incubating sarcoplasmic reticulum vesicles (0.15 mg/ml) at 37 degrees C in, either normal medium that contained 0.15 M sucrose, 0.1 M KCl, 60 microM CaCl2, 2.5 mM ATP and 30 mM Tes at pH 6.8, or a modified medium for elimination of ADP formed from ATP hydrolysis by including, in addition, 3.6 mM phosphocreatine and 33 U/ml of creatine phosphokinase. In normal medium, Ca2+ uptake of sarcoplasmic reticulum vesicles reached a plateau of about 100 nmol/mg. In modified medium, after this phase of Ca2+ uptake, a second phase of Ca2+ accumulation was initiated and reached a plateau of about 300 nmol/mg. The second phase of Ca2+ accumulation was accompanied by phosphate uptake and could be inhibited by ADP. Since, under these experimental conditions, there was no significant difference of the rates of ATP hydrolysis in normal medium and modified medium, extra Ca2+ uptake in modified medium but not in normal medium could not be explained by different phosphate accumulation in the two media. Unidirectional Ca2+ influx of sarcoplasmic reticulum near steady state of Ca2+ uptake was measured by pulse labeling with 45Ca2+. The Ca2+ efflux rate was then determined by subtracting the net uptake from the influx rate. At the first plateau of Ca2+ uptake in normal medium, Ca2+ influx was balanced by Ca2+ efflux with an exchange rate of 240 nmol/mg per min. This exchange rate was maintained relatively constant at the plateau phase. In modified medium, the Ca2+ exchange rate at the first plateau of Ca2+ uptake was about half of that in normal medium. When the second phase of Ca2+ uptake was initiated, both the influx and efflux rates started to increase and reached a similar exchange rate as observed in normal medium. Also, during the second phase of Ca2+ uptake, the difference between the influx and efflux rates continued to increase until the second plateau phase was approached. In conditions where the formation of ADP and inorganic phosphate was minimized by using a low concentration of sarcoplasmic (7.5 micrograms/ml) and/or using acetyl phosphate instead of ATP, the second phase of Ca2+ uptake was also observed. These data suggest that the Ca2+ load attained by sarcoplasmic reticulum vesicles during active transport is modulated by ADP accumulated from ATP hydrolysis. ADP probably exerts its effect by facilitating Ca2+ efflux, which subsequently stimulates Ca2+ exchange.  相似文献   

5.
We have developed a rapid filtration technique for the measurement of Ca2+ release from isolated sarcoplasmic reticulum vesicles. Using this technique, we have studied the Ca2+-induced Ca2+ release of sarcoplasmic reticulum vesicles from rabbit skeletal muscle passively loaded with 5 mM Ca2+. The effect of known effectors (adenine nucleotides and caffeine) and inhibitors (Mg2+ and ruthenium red) of this release were investigated. In a medium composed of 100 mM KCl buffered at pH 6.8 with 20 mM K/3-(N-morpholino)propanesulfonic acid the Ca2+ release rate was maximal (500 nmol of Ca2+ released.(mg of protein)-1.s-1) at 1 micron external Ca2+ and 5 mM ATP. We also observed a rapid Ca2+ release induced by micromolar Ag+ in the presence of ATP (at 1 nM Ca2+). The Ag+-induced Ca2+ release was totally inhibited by 5 micron ruthenium red. We have also investigated the effect of monovalent ions on the Ca2+ release elicited by Ca2+ or Ag+. We show that the Ca2+ release rate: 1) was dependent upon the presence of K+ or Na+ in the release medium and 2) was influenced by a K+ gradient created across the sarcoplasmic reticulum membrane. These results directly support the idea of the involvement of an influx of K+ (through K+ channels) during the Ca2+ release and allow to reconsider a possible influence of the membrane potential of the sarcoplasmic reticulum on the Ca2+ release.  相似文献   

6.
The effect of cyclic AMP on Ca2+ uptake by rabbit heart microsomal vesicular fractions representing mainly fragments of either sarcoplasmic reticulum or sarcolemma was investigated in the presence and absence of soluble cardiac protein kinase and with microsomes prephosphorylated by cyclic AMP-dependent protein kinase. The acceleration of oxalate-promoted Ca2+ uptake by fragmented sarcoplasmic reticulum following cyclic AMP-dependent membrane protein phosphorylation, observed by other authors, was confirmed. In addition it was found that the acceleration was greatest at pH 7.2 and almost negligible at pH 6.0 and pH 7.8. A very marked increase in Ca2+ uptake by cyclic AMP-dependent membrane protein phosphorylation was observed in the presence of boric acid, a reversible inhibitor of Ca2+ uptake. In addition to the microsomal fraction thought to represent mainly fragments of the sarcoplasmic reticulum, the effect of protein kinase and cyclic AMP on Ca2+ uptake was investigated in a cardiac sarcolemma-enriched membrane fraction. Ca2+ uptake by sarcolemmal vesicles, unlike Ca2+ uptake by sarcoplasmic reticulum vesicles, was inhibited by low doses of digitoxin. The acceleration of oxalate-promoted Ca2+ uptake by cyclic AMP and soluble cardiac protein kinase, however, was quite similar to what was seen in preparations of fragmented sarcoplasmic reticulum, which suggests that it may reflect an acceleration of active Ca2+ transport across the myocardial cell surface membrane.  相似文献   

7.
X Yu  S Carroll  J L Rigaud    G Inesi 《Biophysical journal》1993,64(4):1232-1242
The Ca2+ transport adenosine triphosphatase of sarcoplasmic reticulum was reconstituted in unilamellar liposomes prepared by reverse-phase evaporation. The size of the resulting proteoliposomes was similar to that of native sarcoplasmic reticulum vesicles, but their protein content was much lower, with a protein/lipid ratio (wt/wt) of 1:40-160, as compared with 1:1 in the native membrane. The proteoliposomes sustained adenosine triphosphate-dependent Ca2+ uptake at rates proportional to the protein content (1-2 mumol Ca2+/mg protein/min), reaching asymptotic levels corresponding to a lumenal calcium concentration of 10-20 mM. The low permeability of the proteoliposomes permitted direct demonstration of Ca2+/H+ countertransport and electrogenicity by parallel measurements in the same experimental system. Countertransport of one H+ per one Ca2+ was demonstrated, and inhibition of the Ca2+ pump by lumenal alkalinization was relieved by the H+ ionophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone. Consistent with the countertransport stoichiometry, net positive charge displacement was produced by Ca2+ transport, as revealed by a rapid oxonol VI absorption rise. The initial rise and the following steady-state level of oxonol absorption were highest when SO4(2-) was the prevalent anion and lowest in the presence of the lipophilic anion SCN-. The influence of anions was attributed to potential driven counterion compensation. The absorption rise was rapidly collapsed by addition of valinomycin in the presence of K+. Experimentation with Ca2+ and H+ ionophores was consistent with a primary role of Ca2+ and H+ in net charge displacement. The estimated value of the steady-state electrical potential observed under optimal conditions was approximately 50 mV and was accounted for by the estimated charge transfer associated with Ca2+ and H+ countertransport under the same conditions.  相似文献   

8.
Artificially generated K+ gradient from the sarcoplasmic reticulum vesicles enhances the ATP-dependent Ca2+ transport. The effect is not specific for K+, and is observed when K+ is replaced by Na+ or choline. Dissipation of the K+, Na+, choline gradient does not influence the ATP-dependent Ca2+ transport in proteoliposomes from asolectin and purified Ca2+-ATPase. The K gradient in the presence of valinomycin stimulates the ATP-dependent Ca2+ transport in proteoliposomes.  相似文献   

9.
The calcium (Ca2+) uptake by brush border membrane vesicles isolated from fresh human placentas has been characterized. This process was saturable and time- and concentration-dependent. It exhibited a double Michaelis-Menten kinetics, with apparent Km values of 0.17 +/- 0.03 and 2.98 +/- 0.17 mM Ca2+, and Vmax values of 0.9 +/- 0.13 and 2.51 +/- 0.45 pmol.micrograms-1.5 s-1. It was not influenced by the presence of Na+ or Mg2+ in the incubation medium. It was not increased by K+ or anion diffusion potentials, inside negative. At a steady state of 1 mM Ca2+ uptake, a large proportion (approximately 94%) of the Ca2+ was bound to the internal surface of the membranes. Preincubation of these membrane vesicles with voltage-dependent Ca2+ channel blockers (nifedipine and verapamil) had no influence on Ca2+ uptake. However, this uptake was very sensitive to pH. In the absence of a pH gradient, the Ca2+ uptake increased with alkalinity. When the intravesicular pH was kept constant while the pH of the incubation medium was increased, Ca2+ uptake was also stimulated by alkaline pH. In contrast, when the pH of the incubation medium was kept constant and the intravesicular pH was progressively increased, Ca2+ uptake was diminished with alkaline pH. Therefore, H+ gradient (H+ in trans-position greater than H+ in cis-position) favored Ca2+ transport, suggesting a H+/Ca2+ exchange mechanism. Finally, in contrast to the basal plasma membrane, the brush border membrane did not show any ATP-dependent Ca2+ transport activity.  相似文献   

10.
The concentration gradient Ca2+ outflux from the vesicles of the fragmented sarcoplasmic reticulum of rabbit skeletal muscles has been studied under conditions of the induced membrane potential, the concentrations of Ca2+ and H+ in the medium washing over the vesicles being different. The Ca2+ outflux from vesicles is shown to be the same with a decrease of the membrane potential from--80 down to -10 mV and gets higher with the zero and subsequent positive values of the latter. A significant intensification of the Ca2+ outflux from vesicles under the effect of external-vesicular Ca2+ has been observed at its concentration of 10(-5) M. Against this background of external-vesicular Ca2+ and zero value of the membrane potential either exogenous AMP or the pH increase from 6.5 up to 7.8 favour a release of more than 70% of passively accumulated Ca2+. The pH effect grows with a decrease in the external-vesicular concentration of Ca2+. A conclusion is drawn on the significance of protons in the regulation of the Ca2+ release from the sarcoplasmic reticulum.  相似文献   

11.
Ca2+-ATPase from sarcoplasmic reticulum was reconstituted into phospholipid/cholesterol (9:1) vesicles (RO). Sucrose density gradient centrifugation of the RO vesicles separated a light layer (RL) with a high lipid/protein ratio and a heavy layer (RH). RH vesicles exhibited a high rate of Ca2+-dependent ATP hydrolysis but did not accumulate Ca2+. RL vesicles, on the other hand, showed an initial molar ratio of Ca2+ uptake to ATP hydrolysis of approximately 1.0. Internal trapping of transported Ca2+ facilitated studies over periods of several minutes. Ca2+ transport and ATP hydrolysis declined concomitantly, reaching levels near 0 with external Ca2+ concentrations less than or equal to 2 microM. Ca2+ uptake was inhibited by the Ca2+ ionophore A23187, the detergent Triton X-100, and the metabolic inhibitor quercetin. Ca2+ transport generated a transient electrical potential difference, inside positive. This finding is consistent with the hypothesis that the Ca2+ pump is electrogenic. Steady state electrical potentials across the membrane were clamped by using potassium gradients and valinomycin, and monitored with voltage-sensitive dyes. Over a range of +50 to -100 mV, there was an inverse relationship between the initial rate of Ca2+ uptake and voltage, but the rate of ATP hydrolysis was nearly constant. In contrast, lowering the external Ca2+ concentration depressed both transport and ATP hydrolysis. These findings suggest that the membrane voltage influences the coupling between Ca2+ transport and ATP hydrolysis.  相似文献   

12.
Alkalinization-induced Ca2+ release from isolated frog or rabbit sarcoplasmic reticulum vesicles appears to consist of two distinct components: 1) a direct activation of ruthenium red-sensitive Ca2+ release channels in terminal cisternae and 2) an increased ruthenium red-insensitive Ca2+ efflux through some other efflux pathway distributed throughout the sarcoplasmic reticulum. The first of these releases exhibits an alkalinization-induced inactivation process and does not depend on the ruthenium red-insensitive form of Ca2+ release as a triggering agent for secondary Ca(2+)-induced Ca2+ release. Both releases are inhibited when the extravesicular (i.e. cytoplasmic) free [Ca2+] is reduced. This may reflect an increased sensitivity of the Ca2+ release channels to Ca2+ at alkaline pH. The pH sensitivity of the ruthenium red-sensitive Ca2+ release channels could be of significance during excitation-contraction coupling. The ruthenium red-insensitive form of Ca2+ release is less likely to be physiologically relevant, but it probably has contributed greatly to reports of alkalinization-induced decreases in net sarcoplasmic reticulum Ca2+ uptake, particularly under conditions where oxalate supported Ca2+ uptake is much less affected, as here.  相似文献   

13.
ATP-dependent Ca2+ uptake by brain microsomes was classified into two fractions according to the sensitivity to saponin. Properties of each fraction of Ca2+ uptake were examined and compared with those of inside-out membrane vesicles of erythrocyte and cardiac sarcoplasmic reticulum. The concentration of saponin for 50% inhibition (IC50) of major saponin-sensitive Ca2+ uptake was 11 micrograms/ml, and this uptake was enhanced by calmodulin. The minor saponin-insensitive Ca2+ uptake fraction (IC50; 90 micrograms/ml) was not affected by calmodulin but was enhanced by oxalate or 0.1 M KCl. The IC 50 of saponin for inside-out membrane vesicles of erythrocyte and cardiac sarcoplasmic reticulum was 11.3 and 114.8 micrograms/ml, respectively. A characteristic ring-like saponin-cholesterol micellar structure was observed electron microscopically in most membrane vesicles of brain microsomes and erythrocyte membrane vesicles but not in the cardiac sarcoplasmic reticulum. These observations indicate that saponin-sensitive and insensitive Ca2+ uptake was derived from plasma membranes and endoplasmic reticulum, respectively. Saponin proved useful for distinguishing the Ca2+ transport activity of plasma membrane from the Ca2+ uptake of other cellular organelles in the membrane preparations.  相似文献   

14.
The passive Ca2+ permeability of fragmented sarcoplasmic reticulum membranes is 10(4) to 10(61 times greater than that of liposomes prepared from natural or synthetic phospholipids. The contribution of membrane proteins to the Ca2+ permeability was studied by incorporating the purified [Ca2+ + Mg2+]-activated ATPase into bilayer membranes prepared from different phospholipids. The incorporation of the Ca2+ transport ATPase into the lipid phase increased its Ca2+ permeability to levels approaching that of sarcoplasmic reticulum membranes. The permeability change may arise from a reordering of the structure of the lipid phase in the environment of the protein or could represent a specific property of the protein itself. The calcium-binding protein of sarcoplasmic reticulum did not produce a similar effect. The increased rate of Ca2+ release from reconstituted ATPase vesicles is not a carrier-mediated process as indicated by the linear dependence of the Ca2+ efflux upon the gradient of Ca2+ concentration and by the absence of competition and countertransport between Ca2+ and other divalent metal ions. The increased Ca2+ permeability upon incorporation of the transport ATPase into the lipid phase is accompanied by similar increase in the permeability of the vesicles for sucrose, Na+, choline, and SO42- indicating that the transport ATPase does not act as a specific Ca2+ channel. Native sarcoplasmic reticulum membranes are asymmetric structures and the 75-A particles seen by freeze-etch electron microscopy are located primarily in the outer fracture face. In reconstituted ATPase vesicles the distribution of the particles between the two fracture faces is even, indicating that complete structural reconstitution was not achieved. The Ca2+ transport activity of reconstituted ATPase vesicles is also much less than that of fragmented sarcoplasmic reticulum. The density of the 40-A surface particles visible after negative staining of native or reconstituted vesicles is greater than that of the intramembranous particles and the relationship between these two structures remains to be established.  相似文献   

15.
Development of myometrium in young female rats was stimulated by administration of diethylstilboestrol. Plasma membrane and sarcoplasmic reticulum from rat myometrium were separated by a new and rapid method using a Percoll gradient. Calcium uptake was inhibited in plasma membrane vesicles isolated from oxytocin-treated myometrium, while no consistent effect of oxytocin was found on the Ca2+ uptake in the sarcoplasmic reticulum. Oxytocin regulated the plasma membrane Ca2+ pump by decreasing its apparent affinity for Ca2+ without affecting its maximal velocity. The K1/2 for Ca2+ in the absence of calmodulin was 0.41 +/- 0.04 microM in normal membranes; this was increased to 0.93 +/- 0.12 microM in oxytocin-treated membranes. Calmodulin decreased the K1/2 for Ca2+ to 0.27 +/- 0.027 microM and oxytocin also increased this, to 0.46 +/- 0.061 microM. The effect of oxytocin on the plasma membrane Ca2+ pump was highly dependent on the hormonal status of the animals. When the diethylstilboestrol was administered together with progesterone, the inhibitory action of oxytocin was totally suppressed, consistent with the expected action of this agent. The results suggest that regulation of the plasma membrane Ca2+ pump may be important in the prolonged elevation of intracellular Ca2+ caused by oxytocin.  相似文献   

16.
Ca2+ transport was investigated in vesicles of sarcoplasmic reticulum subfractionated from bovine main pulmonary artery and porcine gastric antrum using digitonin binding and zonal density gradient centrifugation. Gradient fractions recovered at 15-33% sucrose were studied as the sarcoplasmic reticulum component using Fluo-3 fluorescence or 45Ca2+ Millipore filtration. Thapsigargin blocked active Ca2+ uptake and induced a slow Ca2+ release from actively loaded vesicles. Unidirectional 45Ca2+ efflux from passively loaded vesicles showed multicompartmental kinetics. The time course of an initial fast component could not be quantitatively measured with the sampling method. The slow release had a half-time of several minutes. Both components were inhibited by 20 microM ruthenium red and 10 mM Mg2+. Caffeine, inositol 1,4,5-trisphosphate, ATP, and diltiazem accelerated the slow component. A Ca2+ release component activated by ryanodine or cyclic adenosine diphosphate ribose was resolved with Fluo-3. Comparison of tissue responses showed that the fast Ca2+ release was significantly smaller and more sensitive to inhibition by Mg2+ and ruthenium red in arterial vesicles. They released more Ca2+ in response to inositol 1,4,5-trisphosphate and were more sensitive to activation by cyclic adenosine diphosphate ribose. Ryanodine and caffeine, in contrast, were more effective in gastric antrum. In each tissue, the fraction of the Ca2+ store released by sequential application of caffeine and inositol 1,4,5-trisphosphate depended on the order applied and was additive. The results indicate that sarcoplasmic reticulum purified from arterial and gastric smooth muscle represents vesicle subpopulations that retain functional Ca2+ channels that reflect tissue-specific pharmacological modulation. The relationship of these differences to physiological responses has not been determined.  相似文献   

17.
Dicyclohexylcarbodiimide (DCCD), a hydrophobic carboxyl reagent, inhibited Ca2+ release from Ca2+-loaded sarcoplasmic reticulum vesicles, induced by elevated pH, tetraphenylboron, ATP + Pi, or membrane modification with acetic anhydride. Under the conditions used, the same concentrations of DCCD were required for inhibition of Ca2+ release, Ca2+-ATPase activity, and Ca2+ uptake. On the other hand, free Ca2+ or alkaline pH prevented the inhibition by DCCD of Ca2+-ATPase and coupled Ca2+ transport but not that of Ca2+ release. Moreover, several hydrophilic carboxyl reagents inhibited Ca2+-ATPase but not Ca2+ release. We suggest that a carboxyl residue(s), located in a hydrophobic region of a protein(s), is involved in the control of Ca2+ release, where DCCD interaction with this group blocks Ca2+ release. This group is distinct from the one involved in the inhibition of Ca2+-ATPase. DCCD also inhibited [3H]ryanodine binding to junctional sarcoplasmic reticulum membranes. The presence of Ca2+ or an alkaline pH only slightly affects the degree of inhibition of ryanodine binding by DCCD. Incubation of the membranes with [14C]DCCD resulted in labeling of 350-, 170-, 140-, 53-, and 30-kDa proteins in addition to the Ca2+-ATPase. The involvement of one or all of the DCCD-labeled proteins in Ca2+ release and ryanodine binding is discussed.  相似文献   

18.
In sarcoplasmic reticulum vesicles or in the (Ca2+ + Mg2+)-ATPase purified from sarcoplasmic reticulum, quercetin inhibited ATP hydrolysis, Ca2+ uptake, ATP-Pi exchange, ATP synthesis coupled to Ca2+ efflux, ATP-ADP exchange, and steady state phosphorylation of the ATPase by inorganic phosphate. Steady state phosphorylation of the ATPase by ATP was not inhibited. Quercetin also inhibited ATP and ADP binding but not the binding of Ca2+. The inhibition of ATP-dependent Ca2+ transport by quercetin was reversible, and ATP, Ca2+, and dithiothreitol did not affect the inhibitory action of quercetin.  相似文献   

19.
Rabbit skeletal muscle sarcoplasmic reticulum was fractionated into a "Ca2+-release" and "control" fraction by differential and sucrose gradient centrifugation. External Ca2+ (2-20 microM) caused the release of 40 nmol of 45Ca2+/mg of protein/s from Ca2+-release vesicles passively loaded at pH 6.8 with an internal half-saturation Ca2+ concentration of 10-20 mM. Ca2+-induced Ca2+ release had an approximate pK value of 6.6 and was half-maximally inhibited at an external Ca2+ concentration of 2 X 10(-4) M and Mg2+ concentration of 7 X 10(-5) M. 45Ca2+ efflux from control vesicles was slightly inhibited at external Ca2+ concentrations that stimulated the rapid release of Ca2+ from Ca2+-release vesicles. Adenine, adenosine, and derived nucleotides caused stimulation of Ca2+-induced Ca2+ release in media containing a "physiological" free Mg2+ concentration of 0.6 mM. At a concentration of 1 mM, the order of effectiveness was AMP-PCP greater than cAMP approximately AMP approximately ADP greater than adenine greater than adenosine. Other nucleoside triphosphates and caffeine were minimally effective in increasing 45Ca2+ efflux from passively loaded Ca2+-release vesicles. La3+, ruthenium red, and procaine inhibited Ca2+-induced Ca2+ release. Ca2+ flux studies with actively loaded vesicles also indicated that a subpopulation of sarcoplasmic reticulum vesicles contains a Ca2+ permeation system that is activated by adenine nucleotides.  相似文献   

20.
Urea, in nondenaturing concentrations, inhibited Ca2+ uptake by sarcoplasmic reticulum vesicles with no concomitant effect on ATP hydrolysis. This inhibition was antagonized by 5 mM oxalate and 20 mM orthophosphate. At concentrations of 0.2 to 1.0 M, urea induced an increase in the Ca2+ efflux from preloaded vesicles diluted in a medium at pH 7.0 containing 2 mM ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid, 0.1 mM orthophosphate, and 0.1 mM MgCl2. The urea-induced efflux was arrested by ligands of the (Ca(2+)-Mg2+) ATPase, namely, K+, Mg2+, Ca2+, and ADP, and by ruthenium red and the polyamines spermine, spermidine, and putrescine. In the case of polyamines a dissociation between the effect on the efflux and the net Ca2+ uptake was observed, as only the efflux could be blocked by the drugs. Glycine betaine, trimethylamine-N-oxide, and sucrose antagonized the effects of urea on both the net Ca2+ uptake and the rate of Ca2+ efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号