首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analysis of partial digestion products extending from the telomere of the human X and Y chromosomes, visualised by hybridisation to a probe located close to the telomere, was used to establish a restriction map of the pseudoautosomal region. In this highly polymorphic region with a 10-fold elevated recombination frequency in males we identified site or methylation differences between 7 different in male and female cell lines and tissues, and derived an estimate of the size of the pseudoautosomal region of approximately 3 Megabases by comparing X and Y chromosomes. This size correlates well with previous estimates based on genetic arguments and argues against a strongly enhanced rate of exchange near telomeres in general. We identified a CpG rich and hypomethylated region within 500 kbp from the telomere, which might reflect structural features of mammalian telomeres, and a small number of (additional) CpG islands, which might represent candidate genes for the Turner phenotype in XO females.  相似文献   

2.
Utilising pulse-field gel electrophoresis physical linkage between three mouse X-linked genes has been demonstrated. The three genes, P3, G6pd and Cf-8 all lie within 400 Kb of DNA. This physical linkage mirrors the situation on the human X chromosome, representing the first demonstration of mouse/human synteny at the physical level. A detailed physical map encompassing 1.6 Mbp of this region is presented. A number of the rare cutter restriction enzyme sites within this map are partially blocked on the inactive X chromosome, presumably due to the methylation of CpG rich islands. Pulsed field gel electrophoresis therefore provides a useful tool for the study of X-inactivation over large regions of the X chromosome.  相似文献   

3.
4.
We used the 4C-Seq technique to characterize the genome-wide patterns of spatial contacts of several CpG islands located on chromosome 14 in cultured chicken lymphoid and erythroid cells. We observed a clear tendency for the spatial clustering of CpG islands present on the same and different chromosomes, regardless of the presence or absence of promoters within these CpG islands. Accordingly, we observed preferential spatial contacts between Sp1 binding motifs and other GC-rich genomic elements, including the DNA sequence motifs capable of forming G-quadruplexes. However, an anchor placed in a gene/CpG island-poor area formed spatial contacts with other gene/CpG island-poor areas on chromosome 14 and other chromosomes. These results corroborate the two-compartment model of the spatial organization of interphase chromosomes and suggest that the clustering of CpG islands constitutes an important determinant of the 3D organization of the eukaryotic genome in the cell nucleus. Using the ChIP-Seq technique, we mapped the genome-wide CTCF deposition sites in the chicken lymphoid and erythroid cells that were used for the 4C analysis. We observed a good correlation between the density of CTCF deposition sites and the level of 4C signals for the anchors located in CpG islands but not for an anchor located in a gene desert. It is thus possible that CTCF contributes to the clustering of CpG islands observed in our experiments.  相似文献   

5.
《Epigenetics》2013,8(7):951-963
We used the 4C-Seq technique to characterize the genome-wide patterns of spatial contacts of several CpG islands located on chromosome 14 in cultured chicken lymphoid and erythroid cells. We observed a clear tendency for the spatial clustering of CpG islands present on the same and different chromosomes, regardless of the presence or absence of promoters within these CpG islands. Accordingly, we observed preferential spatial contacts between Sp1 binding motifs and other GC-rich genomic elements, including the DNA sequence motifs capable of forming G-quadruplexes. However, an anchor placed in a gene/CpG island-poor area formed spatial contacts with other gene/CpG island-poor areas on chromosome 14 and other chromosomes. These results corroborate the two-compartment model of the spatial organization of interphase chromosomes and suggest that the clustering of CpG islands constitutes an important determinant of the 3D organization of the eukaryotic genome in the cell nucleus. Using the ChIP-Seq technique, we mapped the genome-wide CTCF deposition sites in the chicken lymphoid and erythroid cells that were used for the 4C analysis. We observed a good correlation between the density of CTCF deposition sites and the level of 4C signals for the anchors located in CpG islands but not for an anchor located in a gene desert. It is thus possible that CTCF contributes to the clustering of CpG islands observed in our experiments.  相似文献   

6.
7.
8.
Cohen NM  Kenigsberg E  Tanay A 《Cell》2011,145(5):773-786
Mammalian CpG islands are key epigenomic elements that were first characterized experimentally as genomic fractions with low levels of DNA methylation. Currently, CpG islands are defined based on their genomic sequences alone. Here, we develop evolutionary models to show that several distinct evolutionary processes generate and maintain CpG islands. One central evolutionary regime resulting in enriched CpG content is driven by low levels of DNA methylation and consequentially low rates of CpG deamination. Another major force forming CpG islands is biased gene conversion that stabilizes constitutively methylated CpG islands by balancing rapid deamination with CpG fixation. Importantly, evolutionary analysis and population genetics data suggest that selection for high CpG content is not?a significant factor contributing to conservation of CpGs in differentially methylated regions. The heterogeneous, but not selective, origins of CpG islands have direct implications for the understanding of DNA methylation patterns in healthy and diseased cells.  相似文献   

9.
CpG islands in vertebrate genomes   总被引:120,自引:0,他引:120  
  相似文献   

10.
DNA methylation is a major epigenetic modification of the genome that affects basic biological functions, such as gene expression and cell development. We used the human genome sequences and the DNA methylation data that are available in order to establish a map of the levels of GC and methylation in isochores. We also looked for the correlations that hold between GC levels and the distribution of the (1) dinucleotide CpG, (2) ratio 5mC/CpG, and (3) CpG islands. Our results show that methylation levels, CpG frequencies, and the density of CpG islands are positively correlated with the GC level of isochores. In contrast, the correlation between the 5mC/CpG ratio and GC is a negative one because the increase in methylation lags behind that of CpG, to reach a plateau in the GC-richest, gene-richest isochore families H2 and H3. In conclusion, there are more CpG targets that remain unmethylated in the GC-richest, gene-richest isochores in comparison with the other isochores. This conclusion supports the idea that the widespread methylation under consideration here has a general inhibitory effect on gene expression.  相似文献   

11.
12.
The methylation status of CpG islands is highly correlated with gene expression. Current methods for computational prediction of DNA methylation only utilize DNA sequence features. In this study, besides 35 DNA sequence features, we added four histone methylation marks to predict the methylation status of CpG islands, and improved the accuracy to 89.94%. Also we applied our model to predict the methylation pattern of all the CpG islands in the human genome, and the results are consistent with the previous reports. Our results imply the important roles of histone methylation marks in affecting the methylation status of CpG islands. H3K4me enriched in the methylation-resistant CpG islands could disrupt the contacts between nucleosomes, unravel chromatin and make DNA sequences accessible. And the established open environment may be a prerequisite for or a consequence of the function implementation of zinc finger proteins that could protect CpG islands from DNA methylation.  相似文献   

13.
14.
DNA methylation is being increasingly recognized to play a role in regulation of hepatitis B virus (HBV) gene expression. The aim of this study was to compare the CpG island distribution among different HBV genotypes. We analyzed 176 full-length HBV genomic sequences obtained from the GenBank database, belonging to genotypes A through J, to identify the CpG islands in the HBV genomes. Our results showed that while 79 out of 176 sequences contained three conventional CpG islands (I–III) as previously described, 83 HBV sequences harbored only two of the three known islands. Novel CpG islands were identified in the remaining 14 HBV isolates and named as CpG island IV, V, and VI. Among the eight known HBV genotypes and two putative genotypes, while HBV genomes containing three CpG islands were predominant in genotypes A, B, D, E, and I; genotypes C, F, G, and H tended to contain only two CpG islands (II and III). In conclusion, the CpG islands, which are potential targets for DNA methylation mediated by the host functions, differ among HBV genotypes, and these genotype-specific differences in CpG island distribution could provide new insights into the understanding of epigenetic regulation of HBV gene expression and hepatitis B disease outcome.  相似文献   

15.
The gene for Huntington disease, a neurodegenerative disorder with autosomal dominant inheritance, has been localized to the terminal portion of the short arm of human chromosome 4 (4p16.3) by linkage analysis. Since eventual isolation of the gene requires the application of high-resolution genetic analysis coupled with long-range DNA mapping and cloning techniques, we have constructed a physical map of the chromosomal region 4p16.3 using more than 20 independently derived probes. We have grouped these markers into three clusters which have been ordered and oriented by genetic and somatic cell genetic mapping information. The mapped region extends from D4S10 (G8) toward the telomere and covers minimally 5 Mb.  相似文献   

16.
17.
The X-linked agammaglobulinaemia (XLA) gene locus has previously been mapped to Xq22. Genetic linkage analysis has shown tight linkage between the disease and the DXS178 locus and that DXS3 and DXS94 are the closest proximal and distal flanking markers, respectively, separated by a genetic distance of 10–12 cM. We attempted to construct a physical map of Xq22 using pulsed field gel electrophoresis (PFGE) and rare-cutting restriction enzymes in order to obtain a finite physical value for the distance between DXS3 and DXS94. However, these attempts were hampered by the large number of rare-cutting restriction enzyme sites around the DXS178 locus, indicative of the presence of CpG rich regions of DNA. We were able to construct a physical map of the sites close to DXS178 that suggests the presence of at least three, and perhaps as many as five, CpG islands. These are arranged on either side of DXS178, extending over about 550kb of genomic DNA. Each of these regions must be considered as being associated with a potential candidate gene sequence for the XLA gene and we have initiated a chromosome walk from DXS178 to the nearest of these islands.  相似文献   

18.
高甲基化的CpG岛所致基因表观遗传学转录失活已经成为肿瘤表观基因组学研究的重要内容。现在已有很多检测CpG岛甲基化的方法,但由于各自的局限,还没有建立一种能快速在全基因组水平上进行甲基化CpG岛的富集方法。本研究利用甲基化结合蛋白MBD2b具有特异性结合甲基化DNA的特性, 建立了一种基于DNA免疫共沉淀技术的全基因组甲基化CpG岛的富集方法。在大肠杆菌中表达重组的GST-MBD2b蛋白,通过Glutathione Sepharose 4B对重组蛋白进行纯化,制备成亲和层析柱,利用在不同的盐离子强度下甲基化DNA和非甲基化DNA的结合能力不同,对甲基化DNA进行富集。用甲基化酶SssI处理过的DNA片段与非甲基化DNA片段进行富集效率的检测,发现0.5M KCl的浓度是甲基化DNA片段和非甲基化DNA片段得以分开的临界条件。样品的富集效率用Real Time PCR进行检测。结果表明,这种方法能够实现对全基因组甲基化DNA的有效富集且最高的富集倍数可达到100多倍。富集到的甲基化DNA可以进行后续的定量PCR, DNA测序和全基因组芯片的分析等工作,为大规模分析全基因组CpG 岛甲基化的改变奠定了基础。  相似文献   

19.
Tandem repeats in the CpG islands of imprinted genes   总被引:4,自引:0,他引:4  
Hutter B  Helms V  Paulsen M 《Genomics》2006,88(3):323-332
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号