首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
The observed equilibrium constants (Kobs) for the reactions of d-2-phosphoglycerate phosphatase, d-2-Phosphoglycerate3? + H2O → d-glycerate? + HPO42?; d-glycerate dehydrogenase (EC 1.1.1.29), d-Glycerate? + NAD+ → NADH + hydroxypyruvate? + H+; and l-serine:pyruvate aminotransferase (EC 2.6.1.51), Hydroxypyruvate? + l-H · alanine± → pyruvate? + l-H · serine±; have been determined, directly and indirectly, at 38 °C and under conditions of physiological ionic strength (0.25 m) and physiological ranges of pH and magnesium concentrations. From these observed constants and the acid dissociation and metal-binding constants of the substrates, an ionic equilibrium constant (K) also has been calculated for each reaction. The value of K for the d-2-phosphoglycerate phosphatase reaction is 4.00 × 103m [ΔG0 = ?21.4 kJ/mol (?5.12 kcal/mol)]([H20] = 1). Values of Kobs for this reaction at 38 °C, [K+] = 0.2 m, I = 0.25 M, and pH 7.0 include 3.39 × 103m (free [Mg2+] = 0), 3.23 × 103m (free [Mg2+] = 10?3m), and 2.32 × 103m (free [Mg2+] = 10?2m). The value of K for the d-glycerate dehydrogenase reaction has been determined to be 4.36 ± 0.13 × 10?13m (38 °C, I = 0.25 M) [ΔG0 = 73.6 kJ/mol (17.6 kcal/mol)]. This constant is relatively insensitive to free magnesium concentrations but is affected by changes in temperature [ΔH0 = 46.9 kJ/mol (11.2 kcal/mol)]. The value of K for the serine:pyruvate aminotransferase reaction is 5.41 ± 0.11 [ΔG0 = ?4.37 kJ/mol (?1.04 kcal/mol)] at 38 °C (I = 0.25 M) and shows a small temperature effect [ΔH0 = 16.3 kJ/ mol (3.9 kcal/mol)]. The constant showed no significant effect of ionic strength (0.06–1.0 m) and a response to the hydrogen ion concentration only above pH 8.5. The value of Kobs is 5.50 ± 0.11 at pH 7.0 (38 °C, [K+] = 0.2 m, [Mg2+] = 0, I = 0.25 M). The results have also allowed the value of K for the d-glycerate kinase reaction (EC 2.7.1.31), d-Glycerate? + ATP4? → d-2-phosphoglycerate3? + ADP3? + H+, to be calculated to be 32.5 m (38 °C, I = 0.25 M). Values for Kobs for this reaction under these conditions and at pH 7.0 include 236 (free [Mg2+] = 0) and 50.8 (free [Mg2+] = 10?3m).  相似文献   

2.
The effects of irradiance on the biochemical composition of the prymnesiophyte microalga, Isochrysis sp. (Parke; clone T-ISO), a popular species for mariculture, were examined. Cultures were grown under a 12:12 h light: dark (L:D) regime at five irradiances ranging from 50 to 1000 μE·m 2·s?1 and harvested at late-logarithmic phase for analysis of biochemical composition. Gross composition varied aver the range of irradiances. The highest levels of protein were present in cells from cultures grown at 100 and 250 μE·m 3·s1, and minimum levels of carbohydrate and lipid occurred at 50 μE·m?2·s?1. Because the cell dry weight was reduced at lower irradiances, different trends were evident when results were expressed as percentage of dry weights. Protein percentages were highest at Wand 100 μE·m?2·s?1 and carbohydrate at 100 μE·m?2·s?1. The composition of amino acids did not differ over the range of irradiances. Glutamate and aspartate were always present in high proportions (9.0–13.5%); histidine. methionine, tryptophan, cystine, and hydroxy-proline were minor constituents (0.0–2.6%). Glucose was the predominant sugar in all cultures, ranging from 23.0% (50 μE·m?2·s?1) to 45.0% (100 μE·m?2·s?1) of total polysaccharide. No correlation was found between the proportion of any of the sugars and irradiance. The proportions of the lipid class components and fatty acids showed little change with irradiance. The main fatty acids were 14:0, 16:0, 16:1(n-7), 18:1(n-9), 18:3(n-3). 18:4(n-3), 18:5(n-3), and 22:6(n-3). Proportions of 22: 6(n-3) increased, whereas l8:3(n-3). 18:3(n-6). and 18:4(n-3) decreased, with increasing irradiance. Pigment concentrations were highest in cultures grown at 50 μE·m?2·s?1, except for fucoxanthin and diadinoxanthin (100 μE·m?2·s?1). The concentrations of accessory pigments correlated with chlorophyll a, which decreased in concentration with increasing irradiance. On the basts of biochemical composition, an irradiance of 100 μE·m?1·s?1 (12:12 h L:D cycle)for the culture of Isochrysis sp. (clone T-ISO) may provide optimal nutritional value for maricultured animals, although feeding trials are now necessary to substantiate this.  相似文献   

3.
Gametophytes of Macrocystis pyrifera (L.) C. Ag. were cultured under a series of quantum irradiances in three photoperiod regimes. The quantum irradiances in each photoperiod were adjusted to provide equal daily irradiation dosages between photoperiods which allowed a critical examination of the interactions between quantum irradiance and quantum dose in determining gametophyte fertility. The lowest quantum irradiance which stimulated gametogenesis in more than 50% of the female gametophytes was 5 μE·m?2·s?1. The saturating irradiance was ca. 10 μE·m?2·s?1 at photoperiods of 12 h or greater. In terms of daily quantum dose, the lowest dose at which greater than 50% gametogenesis occurred was 0.2 E·m?2·d?1. However, this critical quantum dose was higher (0.4 E·m?2·d?1) when instantaneous irradiances were less than 5 μE·m?2·s?1. The saturation quantum dose was also affected by the rate at which the quantum dose was received and varied from 0.4 to 0.8 E·m?2·d?1. Gametophytes in all three photoperiods reached 100% fertility at quantum irradiances above 5 μE·m?2·s?1. Photoperiod effects were small and could be accounted for by quantum dosage effects.  相似文献   

4.
Optimum light, temperature, and pH conditions for growth, photosynthetic, and respiratory activities of Peridinium cinctum fa. westii (Lemm.) Lef were investigated by using axenic clones in batch cultures. The results are discussed and compared with data from Lake Kinneret (Israel) where it produces heavy blooms in spring. Highest biomass development and growth rates occurred at ca. 23° C and ≥50 μE· m?2·s1 of fluorescent light with energy peaks at 440–575 and 665 nm. Photosynthetic oxygen release was more efficient in filtered light of blue (BG 12) and red (RG 2) than in green (VG 9) qualities. Photosynthetic oxygen production occurred at temperatures ranging from 5° to 32° C in white fluorescent light from 10 to 105 μE·m?2·s?1 with a gross maximum value of 1500 × 10?12 g·cell?1·h?1 at the highest irradiance. The average respiration amounted to ca. 12% of the gross production and reached a maximum value of ca. 270·10?12 g·cell?1·h?1 at 31° C. A comparison of photosynthetic and respiratory Q10-values showed that in the upper temperature range the increase in gross production was only a third of the corresponding increase in respiration, although the gross production was at maximum. Short intermittent periods of dark (>7 min) before high light exposures from a halogen lamp greatly increased oxygen production. Depending on the physiological status of the alga, light saturation values were reached at 500–1000 μE·m?2·s?1 of halogen light with compensation points at 20–40 μE·m?2·s?1 and Ik-values at 100–200 μE·m?2·s?1. The corresponding values in fluorescent light in which it was cultured and adapted, were 25 to 75% lower indicating the ability of the alga to efficiently utilize varying light conditions, if the adaptation time is sufficient. Carbon fixation was most efficient at ca. pH 7, but the growth rates and biomass development were highest at pH 8.3.  相似文献   

5.
Binding of 1,N6-ethanoadenosine triphosphate to actin   总被引:3,自引:0,他引:3  
G-actin is known to bind one molecule of ATP. Its polymerization to F-actin is accompanied by the splitting off of the terminal phosphate of the bound nucleotide. We have found that the fluorescent 1,N6-ethanoadenosine triphosphate (?ATP) can substitute for ATP in G-actin and that G-actin containing bound ?ATP possesses essentially full polymerizability. The binding of this ATP analog has been studied by following the inactivation of the ?ATP·G-actin complex. The binding constant (4?5.7 × 106 M?1) obtained in the absence of EDTA is about 50% of that for ATP, while the binding constant obtained in the presence of EDTA (0.9?3.0 × 105 M?1) is comparable to those for ATP and ADP. These findings suggest that ?ATP can be used as a structural probe for actin. The fluorescence lifetime of ?ATP bound to G·actin is 36 nsec. The rotational relaxation time of ?ATP·G-actin is near 60 nsec. at 20°C.  相似文献   

6.
—The hydrolysis of ThTP by rat brain membrane-bound ThTPase is inhibited by nucleoside diphosphates and triphosphates. ATP and ADP are most effective, reducing hydrolysis by 50% at concentrations of 2 × 10?5m and 7·5 × 10?5m respectively. Nucleoside monophosphates and free nuclcosides as well as Pi have no effect on enzyme activity. ThMP and ThDP also fail to inhibit hydrolysis in concentrations up to 5 × 10?3m . Non-hydrolysable methylene phosphate analogs of ATP and ADP were used in further kinetic studies with the ThTPase. The mechanism of inhibition by these analogs is shown to be of mixed non-competitive nature for both compounds. An observed Ki, of 4 × 10?5m for the ATP analog adenosine-PPCP and 9 × 10?5m for the ADP analog adenosine-PCP is calculated at pH 6·5. Formation of the true enzyme substrate, the [Mg2+. ThTP] complex, is not significantly affected by concentrations of analogs producing maximal (>95%) inhibition of enzyme activity. Likewise the relationships between pH and observed Km and pH and Vmax are not shifted by the presence of similar concentrations of inhibitor.  相似文献   

7.
A mathematical treatment and an original microcalorimetric method are developed to verify an eventual competitive binding between any two substances for the same macromolecule. To apply this method, a competitive binding of L-tryptophan and one benzodiazepin (dipotassium chlorazepate) for human serum albumin is perfectly demonstrated.The association constants and the enthalpy variations are equal to 14 000 ± 2000 M?1 and ?6.6 ± 0.2 kcal/mol for human serum albumin · tryptophan complex and 13 000 ± 1000 M?1 and ?10.0 ± 0.2 kcal/mol for human serum albumin · chlorazepate complex. In all cases the stoichiometry is equal to one.The binding of tryptophan to human serum albumin is partially stereospecific; the association constant and the enthalpy variation for D-tryptophan complex are equal, respectively, to 1000 ± 200 M?1 and ?2.6 ± 0.3 kcal/mol.  相似文献   

8.
Y G Chu  I Tinoco 《Biopolymers》1983,22(4):1235-1246
The kinetics of helix formation were investigated using the temperature-jump technique for the following two molecules: dC-G-T-G-A-A-T-T-C-G-C-G, which forms a double helix containing a G·T base pair(the G·T 12-mer), and dC-G-C-A-G-A-A-T-T-C-G-C-G, which forms a double helix containing an extra adenine (the 13-mer). When data were analyzed in an all-or-none model, the activation energy for the helix association process was 22 ± 4 kcal/mol for the G·T 12-mer and 16 ± 7 kcal/mol for the 13-mer. The activation energy for the helix-dissociation process was 68 ± 2 kcal/mol for the G·T 12-mer and 74 ± 3 kcal/mol for the 13-mer. Rate constants for recombination were near 105s?1M?1 in the temperature range from 32 to 47°C; for the dissociation process, the rate constants varied from 1s?1 near 32°C to 130s?1 near 47°C. Possible effects of hairpin loops and fraying ends on the above data are discussed.  相似文献   

9.
Copper (II) accumulation has been investigated in the green alga Scenedesmus subspicatus G. Brinkmann considering both adsorption and uptake kinetics. Experiments were conducted in a Cu- and PH-buffered medium at different free Cu2+ concentrations that were neither growth limiting nor toxic. We distinguished between adsorption on the cell surface and intracellular uptake by extracting copper from the cells with EDTA. Data from short-term experiments were compared with data obtained from experiments under steady state conditions. The accumulation of Cu can be described by two processes, an initial fast adsorption occurring within a minute followed by a slower intracellular uptake. Metal uptake followed Michaelis-Menten kinetics and is mediated by two systems, one with low and the other with high affinity. The maximum uptake rates (1.30 × 10?-10 mol·[g dry wt algae]?1· min?1, 3.67 × 10?-9 mol·[g dry wt algae]?1·min?1), and the half-saturation constants (6.84 × 10?-14 M, 2.82 × 10?-12 M) for the two uptake systems were determined using the Lineweaver-Burk plot. The calculated maximum concentration of binding sites on the surface of the algae is initially higher (9.0 × 10?-6 mol Cu.[g dry wt algae]?1) than under steady state conditions (2.9 × 10?-6 mol Cu·[g dry wt algae]?1). This suggests that the initial binding to the algal surface comprises the binding to specific transport ligands as well as to inert adsorption sites. The conditional stability constant of the Cu binding to surface ligands was calculated as log KCu= 11.0 at pH 7.9. This freshwater alga has a high ability to accumulate Cu, reflecting its adaptation to the bioavailable concentration of copper.  相似文献   

10.
Franklin Fuchs 《BBA》1977,462(2):314-322
A double isotope technique and EGTA buffers were used to measure the binding of Ca2+ to rabbit psoas muscle fibers extracted with detergent and glycerol. These experiments were designed to test the effect of rigor complex formation, determined by the degree of filament overlap, on the properties of the Ca2+-binding sites in the intact filament lattice. In the presence of 5 mM MgCl2 (no ATP), reduction of filament overlap was associated with a reduced binding of Ca2+ over the entire range of free Ca2+ concentrations (5 · 10?8 – 2 · 10?5 M). With maximum filament overlap (sarcomere length 2.1–2.2 μm) the maximum bound Ca2+ was equivalent to 4 mol Ca2+/mol troponin and there was significant positive interaction between binding sites, as shown by Scatchard and Hill plots. With no filament overlap (sarcomere length 3.8–4.4 μm) the maximum bound Ca2+ was equivalent to 3 μmol Ca2+/mol troponin and graphical analysis indicated a single class of non-interacting sites. The data provide evidence that when cross-bridge attachments between actin and myosin filaments are formed not only does an additional Ca2+ binding site appear, but cooperative properties are imposed upon the binding sites.  相似文献   

11.
A protein-bound 32P-labeled substance previously detected in rat-liver mitochondria under conditions chosen to reveal possible energy-rich intermediates of oxidative phosphorylation has been identified as 32P-γ-labeled ATP. The acid-precipitable protein-bound ATP (E·ATP) appears to equilibrate with medium ATP at the time of acid denaturation. After acid denaturation, the 32P label of E·ATP is only slowly removed by exposure to perchloric acid containing ATP or PPi. E·ATP is discharged in aurovertin-inhibited mitochondria during a short exposure to an uncoupler of oxidative phosphorylation in the absence of any change in the endogenous ATP pool. Under optimal energy conditions about one E·ATP is observed per two cytochrome oxidase. The results are consistent with the binding of ATP at the coupling sites of oxidative phosphorylation.  相似文献   

12.
Zinc and salinity effects on membrane transport in Chara connivens   总被引:1,自引:1,他引:0  
Pressure-probe measurements showed that the pressure relaxation of internodal cells of the freshwater alga Chara connivens slowed considerably when 1–5 mol m?3 Zn2+, or more especially Zn2+ and 75 mol m?3 NaCl, were present in the medium for periods of 1 h or longer. These results indicate that the water permeability of the Chara membrane is decreased by Zn2+, and that this effect is enhanced by 75 mol m?3 NaCl. Specific values taken after 375 min exposure were: 5 mol m?3 Zn2+ and 75 mol m?3 NaCl caused the half-time for bulk water movement to increase from 7·8±2·3 to 79·5±5·4s, corresponding to a decrease in the hydraulic conductivity (Lp) from (13·0±3·3) × 10?7 m s?1 mPa?1 to (1·25±0·23) × 10?7 m s?1 MPa?1 (mean±S.D., n= 10). These changes are not seen in the presence of NaCl alone, and to a reduced extent in the presence of 5 mol m?3Zn2+ alone (after 375 min, Lp was (2·4±0·1) × 10?7 m s?1 MPa?1, mean±S.D., n = 6). Ca2+ cannot substitute for Zn2+, but seems to competitively inhibit Zn2+. There was another, kinetically distinct effect of Zn2+: the ingress of Na+ within 15 min of exposure to 75 mol m?3 NaCl is halved by the presence of 1–5 mol m?3 Zn2+, although internal osmolality is little changed by Zn2+. In spite of this, Zn2+ does not exert the long-term protection against NaCl that has been reported for Ca2+. Depending on the concentration of Zn2+ and the duration of the exposure, the effects on water permeability were fully or partly reversible within 24–48 h. The mechanism of these changes is difficult to identify. One possibility is a zinc-induced restriction of trans-membrane channels to give single-file channels which can be blocked by salt.  相似文献   

13.
Our knowledge of the effects of copper on microalgal physiology is largely based on studies conducted with high copper concentrations; much less is known when environmentally relevant copper levels come into question. Here, we evaluated the physiology of Chlorolobion braunii exposed to free copper ion concentrations between 5.7 × 10?9 and 5.0 × 10?6 mol · L?1, thus including environmentally relevant values. Population growth and maximum photosynthetic quantum yield of PSII were determined daily during the 96 h laboratory controlled experiment. Exponentially‐growing cells (48 h) were analyzed for effective quantum yield and rapid light curves (RLC), and total lipids, proteins, carbohydrates, chlorophyll a and carotenoids were determined. The results showed that growth rates and population density decreased gradually as copper increased in experiment, but the photosynthetic parameters (maximum and effective quantum yields) and photochemical quenching (qP) decreased only at the highest free copper concentration tested (5.0 × 10?6 mol · L?1); nonphotochemical quenching (NPQ) increased gradually with copper increase. The RLC parameters Ek and rETRmax were inversely proportional to copper concentration, while α and Im decreased only at 5.0 × 10?6 mol · L?1. The effects of copper in biomolecules yield (mg · L?1) varied depending on the biomolecule. Lipid yield increased at free copper concentration as low as 2.5 × 10?8 mol · L?1, but proteins and carbohydrates were constant throughout.  相似文献   

14.
Uptake of glyeine,l-cysteine,l-leucine,l-methionine,l-aspartic acid andl-lysine was investigated in resting cells ofSaccharomyces cerevisiae treated with 0.3mm actidione for blocking protein synthesis. The amino acids were taken up against substantial concentration gradients (up to nearly 1,000∶1 for μm l-cysteine and glycine). They were present in the free form inside the cells. Their unidirectional transmembrane fluxes were under a negative feedback control by the intracellular concentration of the amino acid involved. The amino acids tested apparently employed more than one transport agéncies for their membrane passage, the half-saturation constants being 6.2–7.7×10−4 m for glycine, 2.5×10−4 m forl-cysteine, 6×10−5 and 4×10−4 m forl-lysine, 3×10−5 and 6×10−4 m forl-methionine, 7–18×10−5 and 1.6×10−3 m forl-aspartic acid and 6×10−5 and 2×10−3 m forl-leucine. The specificities of the transport systems are overlapping but there emerges a wide-affinity transport system for glycine, alanine, leucine, methionine, serine, cysteine, phenylalanine, aspartic acid, asparagine, glutamic acid and tryptophan (and possibly for other amino acids), and more specific systems for each of the following: glycine, lysine, methionine, histidine, arginine, and aspartic and glutamic acids. Proline had the peculiar effect of stimulating the transport of all the amino acids tested. The amino acids apparently interacted in the uptake not only by competition for the binding site but also by allotopic inhibition (e.g.l-cysteine) and possibly stimulation (l-proline). The initial rate of uptake of amino acids and their steady-state level of distribution were characterized by identical activation energies: 7.5 kcal/mole forl-lysine, 6.9 kcal/mole forl-aspartic acid, and 13.2 kcal/mole for glycine.  相似文献   

15.
Laboratory streams were used in a 42-day experiment designed to investigate how the spatial and temporal distribution of lotic periphyton created by current flow over cobble-size substrates is a affected by irradiance. The streams contained 22.5 × 22.5 × 4 cm substrate blocks and were exposed to either 385, 90 or 20 μE·m?2·s?1. We monitored periphyton succession in fast current regimes on top of blocks and in slower current regimes on surfaces recessed between blocks. The absolute differences in AFDW algal biomass between top and recessed substrates were significantly affected by irradiance and time. At the end of the experiment, biomass in streams exposed to 385 μE·m?2·s?1. was approximately 2 and 8 times greater than in streams exposed to 90 and 20 μE·m?2·s?1, respectively. Differences in biomass were greater between irradiance levels than between top and recessed substrates within an irradiance level. Irradiance also had a greater effect than current regime on the taxonomic composition of assemblages. Oscillatoria agardhii Gomont and Navicula minima Grun. characterized assemblages at 20 μE·m?2·s?1, whereas Fragilaria vaucheriae (Kütz.), Nitzschia oregona Sov., Navicula arvensis Hust. and Stigeoclonium tenue (Ag.) Kütz. were more abundant at the two higher irradiances. Detrended correspondence analysis indicated that the rate of succession was relatively high for assemblages at high irradiance and in the slow current regimes between blocks. The results suggested that in natural streams, periphyton patches produced by large differences in irradiance should have a greater effect on periphyton heterogeneity than substrate-induced patches. Moreover, the heterogeneity of algal patches produced by hydrologic differences over a substrate is constrained by irradiance level.  相似文献   

16.
Light intensity and temperature interactions have a complex effect on the physiological process rates of the filamentous bluegreen alga Anabaena variabilis Kütz. The optimum temperature for photosynthesis increased with increasing light intensity from 10°C at 42 μE·m?2·s?1 to 35°C at 562 μE·m?2·s?1. The light saturation parameter, IK, increased with increasing temperatures. The maximum photosynthetic rate (2.0 g C·g dry wt.?1·d?1) occurred at 35°C and 564 μE·m?2·s?1. At 15°C, the maximum rate was 1.25 g C·g dry wt.?1·d?1 at 332 μE·m?2·s?1. The dark respiration rate increased exponentially with temperature. Under favorable conditions of light intensity and temperature the percent of extracellular release of dissolved organic carbon was less than 5% of the total C fixed. This release increased to nearly 40% under combinations of low light intensity and high temperature. A mathematical model was developed to simulate the interaction of light intensity and temperature on photosynthetic rate. The interactive effects were represented by making the light-saturation parameters a function of temperature.  相似文献   

17.
The thermodynamics of ethidium ion binding to the double strands formed by the ribooligonucleotides rCA5G + rCU5G and the analogous deoxyribo-oligonucleotides dCA5G + dCT5G were determined by monitoring the absorbance versus temperature at 260 and 283 nm at several concentrations of oligonucleotides and ethidium bromide. A maximum of three ethidium ions bind to the oligonucleotides, which is consistent with intercalation and nearest-neighbor exclusion. For the ribo-oligonucleotide the binding mechanism is complex. Either two sites (assumed to be the intercalation sites at the two ends of the oligonucleotide) bind more strongly by a factor of 140 than the third site, or all sites are identical, but there is strong anticooperativity on binding (cooperativity parameter, 0.1). In sharp contrast, the binding to the same sequence (with thymine substituted for uracil) in the deoxyribo-oligonucleotide showed all sites equivalent and no cooperativity. For the ribo-oligonucleotides the enthalpy for ethidium binding is ?14 kcal/mol. The equilibrium constants at 25°C depend on the model; either K = 6 × 105M?1 for the two strong sites (4 × 103M?1 for the weak site) or K = 2.5 × 105M?1 for the intrinsic constant of the anticooperative model. For the equivalent deoxyribo-oligonucleotide the enthalpy of binding is -9 kcal/mol and the equilibrium constant at 25°C is a factor of 10 smaller (K = 2.5 × 104M?1).  相似文献   

18.
Franklin Fuchs  Margaret Bayuk 《BBA》1976,440(2):448-455
The binding of 45Ca2+ to glycerinated rabbit psoas fibers was measured by means of a double isotope technique. With 5 mM Mg2+ (no ATP) binding was half-maximal at 1.4 · 10?6M Ca2+ and the maximal amount bound was 1.6 μmol/g protein. At < 50% saturation, the Scatchard plot had a positive slope and the Hill coefficient was 2.2. At greater than 50% saturation, the Scatchard plot was linear with a negative slope (K′ = 0.8 · 106 M?1) and the Hill coefficient was 1.0. In the absence of Mg2+, binding was half-maximal at 3 · 10?7 M Ca2+ and the maximal amount bound was 2.9 μmol/g protein. The Scatchard plot indicated two classes of sites with K′ values of about 2 · 107 and 2 · 106 M?1. The Hill coefficient in the mid-saturation range was approx. 0.6. The data indicate that in the presence of Mg2+ binding to about half of the total Ca2+ binding sites is suppressed and there is a strong positive cooperativity involving half of the remaining sites.  相似文献   

19.
Potato tuber phosphofructokinase was purified 19·.6-fold by a combination of ethanol fractionation and DEAE-cellulose column chromatography. The enzyme was very unstable; its pH optimum was 8·0. Km for fructose-6-phosphate, ATP and Mg2+ was 2·1 × 10?4 M, 4·5 × 10?5 M and 4·0 × 10?4 M respectively. ITP, GTP, UTP and CTP can act as phosphate donors, but are less active than ATP. Inhibition of enzyme activity by high levels of ATP was reversed by increasing the concentration of fructose-6-phosphate; the affinity of enzyme for fructose-6-phosphate decreased with increasing concentration of ATP. 5′-AMP, 3′,5′-AMP, 3′-AMP, deoxy AMP, UMP, IMP, CMP, GMP, ADP, CDP, GDP and UDP did not reverse the inhibition of enzyme by ATP. ADP, phosphoenolpyruvate and citrate inhibited phosphofructokinase activity but Pi did not affect it. Phosphofructokinase was not reactivated reversibly by mild change of pH and addition of effectors.  相似文献   

20.
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号