首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic arabidopsis plants were isolated that contained a T-DNA construct in which the promoter of an auxin-inducible glutathione S-transferase (GST) gene from tobacco was fused to the kanamycin resistance (nptII) as well as to the -glucuronidase (gusA) reporter gene. Subsequently, seeds were treated with EMS to obtain mutants in which both reporter gene fusions were up-regulated. Northern analysis showed that the mRNA level of a related, endogenous auxin-inducible GST gene of Arabidopsis was increased in some of these mutants as well. Two of the gup (GST up-regulated) mutants were characterized in more detail and roughly mapped. Both had epinastic cotyledons and leaves, a phenotype that turned out to be linked to the gup mutation.  相似文献   

2.
Genes homologous to the auxin-inducible Nt103 glutathione S-transferase (GST) gene of tobacco, were isolated from a genomic library of Arabidopsis thaliana. We isolated a clone containing an auxin-inducible gene, At103-1a, and part of a constitutively expressed gene, At103-1b. The coding regions of the Arabidopsis genes were highly homologous to each other and to the coding region of the tobacco gene but distinct from the GST genes that have been isolated from arabidopsis thusfar. Overexpression of a cDNA clone in Escherichia coli revealed that the AT103-1A protein had GST activity.  相似文献   

3.
Summary Arsenic-resistant Chinese hamster ovary (CHO) cells were established by progressively increasing the concentration of sodium arsenite in culture medium. One of the resistant clones, SA7, was also cross-resistant to As(V), Zn, Fe(II), Co, and Hg. The susceptibilities to sodium arsenite in parental CHO cells, revertant SA7N cells, and resistant SA7 cells were correlated with their intracellular glutathione (GSH) levels and glutathione S-transferase (GST) activity. The resistance in SA7 cells was diminished by depletion of GSH in cells after treatment with buthionine sulfoximine. Furthermore, after reexposure of revertant SA7N cells to sodium arsenite, the intracellular GSH levels, GST activity, and resistance to sodium arsenite were raised to the same levels as SA7 cells. These data indicate that the elevation of intracellular GSH levels and GST activity in SA7 cells may be responsible for the resistance to arsenite. A p25 protein, which could be a monomer subunit of GST, accumulated in SA7 cells. In addition, an outward transport inhibitor, verapamil, indiscriminately increased the arsenite toxicity in resistant and parental cells. This work was supported in part by grant NSC77-0201-B001-31 from the National Science Council, Republic of China.  相似文献   

4.
The influence of vanadium, an important dietary micronutrient, was evaluated on the cytosolic reduced glutathione (GSH) content and glutathione S-transferase (GST) activity in several rat target tissues. Supplementation of drinking water with vanadium at the level of 0.2 or 0.5 ppm for 4, 8, or 12 wk was found to increase the GSH level with a concomitant elevation in GST activity in the liver followed by small intestine mucosa, large intestine mucosa, and kidney. The results were almost dose-dependent and mostly pronounced with 0.5 ppm vanadium after 12 wk of its continuous supplementation. Neither the GSH level nor GST activity was significantly altered in forestomach and lung following vanadium supplementation throughout the study. The levels of vanadium that were found to increase the content of GSH and activity of GST in the liver, intestine, and kidney did not exert any toxic manifestation was evidenced from water and food consumption as well as the growth responses of the experimental animals. Moreover, these doses of vanadium did not impair either hepatic or renal functions as they did not alter the serum activities of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), sorbitol dehydrogenase (SDH), as well as serum urea and creatinine levels. All these results clearly indicate that vanadium under the doses employed in our study has a significant inducing role on GSH content with a concurrent elevation in GST activity in the liver and specific extrahepatic tissues without any apparent sign of cytotoxicity. This attribute of vanadium may have a greater importance in terms of biotransformation and detoxification of xenobiotics, including carcinogens. In addition, since the ability to afford an increment in the endogenous GSH-GST pool by anticarcinogenic natural substances has been found to correlate with their activity to inhibit neoplastic transformation, the trace element vanadium may be considered as a novel anticancer agent.  相似文献   

5.
The activity of glutathione S-transferase (GST) decreased progressively in Schistosoma mansoni from mice treated with oltipraz (OPZ). However, the peroxidase activity of GST (selenium-independent) and selenium-dependent glutathione peroxidase was not affected by OPZ treatment. Purification and quantification of GST from worms after OPZ treatment indicated that the decrease in enzyme activity was greater than could be accounted for by the decrease in GST protein content. SDS-polyacrylamide gel electrophoresis followed by Western blot analysis with GST isoenzyme specific antisera revealed a slight decrease in the quantity of both 26 and 28 kDa GSTs. Fractionation of cytosolic GSTs from male S. mansoni by chromatofocusing resolved three major isoenzymes (SmI, II and III) and a minor form which eluted first from the column. SmI, II and III all had a molecular weight of about 28 kDa on SDS-polyacrylamide gel electrophoresis. However, on electrophoresis in the absence of SDS, the three GST forms exhibited different mobilities. The pattern of SmI, II and III was similar in untreated and OPZ-treated worms, but the activities of the isoenzymes from treated worms were lower. The results suggest that OPZ interacts with the GST isoenzymes SmI, II and III in a similar manner; thus, the effects are not isoenzyme specific. Taken together, these results suggest that OPZ and/or its metabolites interact directly with GST resulting in inhibition of activity and reduction in total enzyme protein. This mechanism may be important in the antischistosomal action of OPZ.  相似文献   

6.
汤方  李丽  高希武 《昆虫知识》2012,49(6):1513-1518
本论文采用分光光度计法研究了植物次生物质和杀虫剂对分月扇舟蛾Closteraanastomosis(L.)谷胱甘肽S-转移酶(GSTs)的体外抑制作用。结果表明各植物次生物质和杀虫剂对分月扇舟蛾GSTs活性的体外抑制作用存在差异。当植物次生物质和杀虫剂终浓度为8.34×10-5mol/L时,槲皮素和单宁酸对分月扇舟蛾GSTs活性抑制作用最强,分别为64.41%和58.61%;三唑磷、毒死蜱、辛硫磷、氟铃脲、氟虫腈和哒螨灵都有较强的抑制作用,对GSTs活性抑制率超过20%;氧化乐果、水胺硫磷、丙溴磷、马拉硫磷、灭多威、联苯菊酯、高效氯氰菊酯、甲氰菊酯、高效氯氟氰菊酯、吡虫啉和啶虫脒对分月扇舟蛾GSTs有中等抑制作用;其他杀虫剂对分月扇舟蛾GSTs有较弱(或没有)抑制作用。此外,在一定的浓度范围内,槲皮素、单宁酸和辛硫磷对分月扇舟蛾GSTs活性的抑制作用存在明显的剂量效应关系。槲皮素、单宁酸和辛硫磷对分月扇舟蛾GSTs的抑制中浓度分别为2.19×10-5,2.62×10-5,1.49×10-4mol/L。因此,此研究明确了槲皮素和单宁酸作为防治分月扇舟蛾的新型防治剂或增效剂具有很好的潜力。  相似文献   

7.
利用基因工程技术,体外重组小分子类泛素修饰蛋白酶1(Ulp1)的活性片段,获得高表达、高特异性重组蛋白酶。从酿酒酵母Saccharomyces cerevisia中提取Ulp1编码第403到621个氨基酸残基之间的DNA片段(Ulp1p),在其C端加入6×His并连接到大肠杆菌表达载体pGEX中,构建重组表达质粒pGEX-Ulp1p-his6。将重组质粒转化至大肠杆菌Rosetta(DE3)中,氨苄青霉素抗性筛选转化子。表达、纯化后,以SUMO融合蛋白检测其活性。经过优化,该蛋白可溶性表达,表达量占菌体总蛋白的40.12%。可通过谷胱甘肽琼脂糖凝胶柱或Ni-NTA凝胶亲和层析纯化得到纯度98%的蛋白。经酶切分析,比活力为1.375×104U/mg。融合蛋白GST-Ulp1p-His6无需切除谷胱甘肽S-转移酶(GST)标签,具有很高的活性,制备简易;6×His标签,有利于底物蛋白切割后纯化,减少蛋白损失。本研究为制备高活力的SUMO蛋白酶提供了一个新方法。  相似文献   

8.
为深入探讨重金属镉(cadmium,Cd)的毒性效应,采用不同浓度氯化镉溶液对中华稻蝗Oxya chinensis Thunberg 4龄若虫进行急性染毒,对处理后24、48、72和96 h虫体内羧酸酯酶(CarE)和谷胱甘肽S-转移酶(GST)活性进行测定。结果表明,随着处理时间的延长,对照组和处理组CarE和GST活性均表现为先升后降的趋势。与对照组相比,以α-NA为底物时高浓度处理组(80 mg.L-1)CarE活性在处理后48 h被激活;以β-NA为底物时中浓度处理组(40 mg.L-1)CarE活性在72 h达到最高;以CDNB为底物时,低浓度处理组(20 mg.L-1)GST活性在24 h被激活达到最大值,之后降低。结果显示,中华稻蝗4龄若虫在Cd胁迫下,体内CarE和GST活性发生了变化,以此来抵御机体所受到的重金属毒害。  相似文献   

9.
The effects of feeding ICRHa mice cyclic 12-, 8-, and 6-carbon compounds on glutathione S-transferase (GST) activity in the liver, intestinal mucosa, and the forestomach were determined. The compounds used for this study were 1,5,9-trans,trans,cis-cyclododecatriene, 1,2-trans-5,6-trans-9,10-cis-cyclododecatriene-1,2-oxide, cyclododecanol, cyclododecene oxide, cyclododecane, 1,5-cyclooctadiene, cyclooctene oxide, cyclohexene, and cyclohexene oxide. The unsaturated cyclic 12-carbon compounds elicited the greatest increase in GST activity. Thus, feeding 1,5,9-trans,trans,cis-cyclododecatriene increased this activity almost 4-fold in the livers and the intestinal mucosa of experimental animals. Cyclic 8-carbon compounds were less effective and feeding the cyclic 6-carbon compounds did not result in any significant increase in GST activity. None of the compounds elicited increased GST activity in the fore-stomach. Previous studies have shown that compounds inducing increased GST activity can protect against chemical carcinogens. It remains to be determined whether the compounds identified in the present investigation as inducers of this enzyme system will have such protective capacities.  相似文献   

10.
为了明确舞毒蛾Lymantria dispar谷胱甘肽S-转移酶(GST)对杨树次生物质协同溴氰虫酰胺的胁迫响应机制,选择3种杨树次生物质(黄酮、槲皮素、芦丁)以及新型邻二苯甲酰胺类杀虫剂溴氰虫酰胺作为胁迫外源化合物,以舞毒蛾2龄幼虫为研究对象,通过人工饲料添加次生物质和溴氰虫酰胺的单剂和混剂,测定对舞毒蛾存活率、谷胱甘肽S-转移酶活性及其基因表达影响。结果表明,处理48 h后,3种联合处理组舞毒蛾幼虫的存活率显著低于对照组和各杨树次生物质单剂处理组,存活率依次为53.33%、60.00%和53.33%,各联合处理组幼虫存活率与溴氰虫酰胺处理组差异不显著。除处理6 h外,不同杨树次生物质单剂处理后GST活性均诱导增加。溴氰虫酰胺处理组在48 h内GST活性显著高于单剂处理组和对照组。除联合处理1在6 h、12 h的GST诱导活性低于溴氰虫酰胺处理组外,各联合处理组的GST诱导活性均高于溴氰虫酰胺处理组。舞毒蛾2龄幼虫取食含有不同处理的人工饲料后,其体内LdGSTe2、LdGSTs1、LdGSTs2和LdGSTz1均有所表达,且不同处理的诱导程度呈现差异。以上研究结果为杨树次生物质协同溴...  相似文献   

11.
为了建立家蚕Bombyx mori的药物筛选和毒性评价模型, 以剂量为2 000 mg/kg的抗结核模药异烟肼饲喂家蚕5龄第3天幼虫后检测其中肠和脂肪体的抗氧化解毒相关代谢的变化。结果表明: 雌蚕中肠组织中, 总谷胱甘肽(GSH+2GSSG)、 还原型谷胱甘肽(reduced glutathione, GSH)和氧化型谷胱甘肽(oxidized glutathione, GSSG)含量均呈现迅速上升再缓慢下降趋势; 谷胱甘肽S 转移酶(glutathione S-transferase, GST)活性升高到较大值后逐渐降低; GSH/GSSG的比值下降表明, 在72 min后中肠组织向氧化态转移。脂肪体组织中, 总谷胱甘肽、 GSH和GSSG含量变化均呈现迅速下降再迅速上升的趋势; GST活性达到最大值后逐渐降低后趋于平稳; GSH/GSSG比值升高表明, 在72 min后脂肪体组织向还原态转移。无论雌蚕还是雄蚕, 总谷胱甘肽、 GSH和GSSG含量以及GST活性均是脂肪体高于中肠。雌蚕的总谷胱甘肽含量、 GSH和GSSG含量高于雄蚕, 但雄蚕的GST活性高于雌性。结果说明, 摄入异烟肼引起了家蚕幼虫体内谷胱甘肽氧化还原状态的改变和酶活性的变化, 在这个过程中脂肪体起主要解毒代谢作用。  相似文献   

12.
昆虫谷胱甘肽S-转移酶的基因结构及其表达调控   总被引:2,自引:0,他引:2  
陈凤菊  高希武 《昆虫学报》2005,48(4):600-608
谷胱甘肽S-转移酶(glutathione S-transferases, GSTs)属于一个超家族,目前已从20多种昆虫中克隆得到了近百个GSTs基因序列。这些基因分属于至少3个类别,Ⅰ(Delta)类,Ⅱ类和Ⅲ(Epsilon)类,其中Ⅰ类和Ⅲ类是昆虫特异性的类别。昆虫Ⅰ类GSTs基因通常由多基因家族编码,基因多态性在不同昆虫种类中差异很大。Ⅱ类基因的种类较少,基因的结构较简单,通常是单拷贝基因。Ⅲ类基因是最近才鉴定出来的新类别,目前仅在黑腹果蝇和冈比亚按蚊中明确了其在染色体上的定位。基因簇、可变剪接和基因融合等机制是导致昆虫GSTs基因多态性的主要原因。在抗性昆虫种群中,GSTs表达量的增加有mRNA水平的提高和基因扩增两种机制,但后一种机制的报道很少。GSTs活性的增加是由于属于一类或多类的多个同工酶的增量调控,也有少数是由于单个同工酶的增量调控。GSTs的表达受反式调控元件和顺式调控元件的调控。目前仅有少数含有调节基因的染色体大致位点和可能的调控元件得到鉴定。  相似文献   

13.
Summary Glutathione S-transferase (GST) activity was measured in adult rat hepatocytes during either pure culture or coculture with another rat liver cell type in various media. Addition of nicotinamide, selenium, or dimethylsulfoxide, deprivation of cyst(e)ie and the use of two complex media were tested. Whatever the conditions used, after a constant decrease during the first 24 h, GST remained active over the whole culture period (1–2 wk). However, various patterns were observed: GST activity either remained relatively stable to approximately 50% of the initial value or showed a moderate or strong increase. The highest values were found in pure hepatocyte cultures maintained in the presence of nicotinamide or dimethylsulfoxide. Similar changes were observed using 1-chloro-2,4-dinitrobenzene or 1,2-dichloro-4-nitrobenzene as substrates for GST. Addition of 10−4 M indomethacin resulted in 37 to 60% inhibition of enzyme activity. Thus, these results demonstrate that GST remained expressed during culture but its levels markedly varied depending on the medium composition and type and age of culture. Y. V. was supported by Instituut voor Wetenschappel?k Onderzoek in Landbouw en Nijverheid. This work was supported by INSERM.  相似文献   

14.
Li W  Li Z  Yang J  Ye Q 《Journal of biotechnology》2011,154(4):261-268
Glutathione (GSH) is one of the most ubiquitous non-protein thiols that is involved in numerous cellular activities. The gene coding for a novel bifunctional enzyme catalyzing the reaction for glutathione synthesis, gshF, was cloned from Streptococcus thermophilus SIIM B218 and expressed in Escherichia coli JM109. In the presence of the precursor amino acids and ATP, the induced cells of E. coli JM109 (pTrc99A-gshF) could accumulate 10.3 mM GSH in 5 h. The S. thermophilus GshF was insensitive to feedback inhibition caused by GSH even at 20 mM. At elevated concentrations of the precursor amino acids and ATP, E. coli JM109 (pTrc99A-gshF) produced 36 mM GSH with a molar yield of 0.9 mol/mol based on added cysteine and of 0.45 mol/mol based on added ATP. When ATP was replaced with glucose, E. coli JM109 (pTrc99A-gshF) produced 7 mM in 3 h. Saccharomyces cerevisiae was used to generate ATP for GSH production. In the presence of glucose and the pmr1 mutant of S. cerevisiae BY4742, JM109 (pTrc99A-gshF) produced 33.9 mM GSH in 12 h with a yield of 0.85 mol/mol based on added l-cysteine. It is shown that the S. thermophilus GshF can be successfully used for GSH production.  相似文献   

15.
采用常规生化实验方法,探讨了山楂叶螨在光、暗条件下经万寿菊根的氯仿提取物(TPC)作用后谷胱甘肽S-转移酶、蛋白酶活性及蛋白质含量. 生物样品采用活体处理和离体处理相结合的方法. 结果表明:万寿菊根氯仿提取物的光活化生物活性最高,其次为水提取物,最后为甲醇提取物;山楂叶螨经TPC处理后,谷胱甘肽S-转移酶和蛋白酶活性显著升高,蛋白质含量明显下降,蛋白酶及蛋白质含量变化程度在光照条件下显著高于黑暗处理.万寿菊根氯仿提取物中存在的活性物质,能够促进山楂叶螨离体酶液中蛋白酶的活化;TPC通过激活试螨体内的蛋白酶而促进蛋白质的降解. 万寿菊次生物质的生物活性主要属于光活化活性.  相似文献   

16.
马晓英  李兵  贡成良  沈卫德 《昆虫学报》2007,50(10):996-1001
谷胱甘肽 S-转移酶(glutathione S-transferases,GSTs)是昆虫的重要解毒酶之一。为了研究野桑蚕Bombyx mandarina中谷胱甘肽S-转移酶在真核表达系统中的表达情况。本研究通过RT-PCR从野桑蚕中肠中获得GST-Omega1基因的cDNA序列,该基因的开放读码框为771 bp,编码256 个氨基酸。对推导的氨基酸序列用NCBI的蛋白质Conserved Domains工具进行在线分析,结果显示GST-Omega1的氨基酸序列中具有Cys38和8个GSH结合位点的Omega类基因保守序列。对所获得的基因克隆进表达载体pFastBacHT b中获得pFast-GST-Omega1,将其转化DH10Bac感受态细胞,获得Bac-GST-Omega1重组病毒DNA,用脂质体法转染草地贪夜蛾Sf9细胞,获得重组病毒。对表达产物经SDS-PAGE和Western blotting分析,能检测到一条分子量约为33 kD的特异性条带,与推导的融合蛋白大小相符,该目的蛋白的表达量占总蛋白的14.4%。目的蛋白经His·Bind树脂纯化,用Lineweaver Burk作图法测定其Km和Vmax,结果显示其Km为2.81 µmol/L,Vmax为2.70 µmol/(mg·min)。  相似文献   

17.
Aims:  Production of the recombinant Arabidopsis halleri defensin AhPDF1.1 in a native-like form.
Methods and Results:  Mature AhPDF1.1 cDNA was cloned into pET-28-a(+) and expressed in Escherichia coli Rosetta. After a denaturing extraction, purification by metal affinity chromatography and CNBr cleavage of the His-tag, a protein without extra amino acids at the N-terminus was obtained. An oxidative folding step was then required to renature the protein that was then purified to homogeneity by a C18 HPLC separation. Mass spectroscopy and circular dichroism analyses showed that the recombinant AhPDF1.1 has the expected molecular mass and 3D-structure features of a folded defensin with four-disulfide bridges. The recombinant protein is active against the filamentous fungus Fusarium oxysporum with a minimal inhibitory concentration of 0·6 μmol l−1.
Conclusion:  The proposed purification protocol produces a native-like defensin suitable for tests of new biological roles.
Significance and Impact of the Study:  Plant defensins are essentially known as anti-fungal proteins; however, some unexpected actions on plant cells have recently been discovered. AhPDF1.1, for example, has been shown to confer zinc tolerance. Efficient production of native-like defensins is required to explore the different targets and roles of plant defensins.  相似文献   

18.
We have studied the morphology and vein branching of rosette leaves in Arabidopsis thaliana mutants as and sa, which proved to be alleles of the A.thaliana AS1 and AS2 genes, respectively. We have also analyzed the localization of bioactive auxin, as measured by the expression of the DR5::GUS transgene, as well as the expression patterns of BP, as measured by the expression of the BP::GUS transgene in leaves of the mutants. In mature leaves of the mutants, BP was expressed ectopically. Furthermore, the mutants showed some defects in the localization and concentration of free auxin compared to the wild type. Our results of studying new alleles of AS1 and AS2 support their role in control of class I KNOX genes and auxin transport.  相似文献   

19.
The bacterial expression and purification of human pi class glutathione S-transferase (hGST P1-1) as a hexahistidine-tagged polypeptide was performed. The expression plasmid for hGST P1-1 was constructed by ligation of the cDNA which codes for the protein into the expression vector pET-15b. The expressed protein was purified by either glutathione or metal (Co(2+)) affinity column chromatography, which produced the pure and fully active enzyme in one step with a yield of more than 30 mg/liter culture. The activity of the purified protein was 130 units mg(-1) from the GSH affinity column and 112 units mg(-1) from the Co(2+) affinity column chromatography. The purity of the protein was assessed by electrospray ionization mass spectrometry and size-exclusion chromatography. It showed that the real molecular weight of the hexahistidine-tagged hGST P1-1 polypeptide chain agreed with the calculated value and that the purified protein eluted as an apparent homodimer on the gel filtration column. Our expression system allows the expression and purification of active hexahistidine-tagged hGST P1-1 in high yield with no need of removal of the hexahistidine tag and gives pure protein in one purification step allowing further study of this enzyme.  相似文献   

20.
Flavonoid compounds such as anthocyanins and proanthocyanidins (PAs; so-called condensed tannins) have a multitude of functions in plants. They must be transported from the site of synthesis in the cytosol to their final destination, the vacuoles. Three models have been proposed for sequestering anthocyanins in vacuoles, but the transport machinery for PAs is poorly understood. Novel Arabidopsis mutants, transparent testa 19 (tt19), which were induced by ion beam irradiation, showed a great reduction of anthocyanin pigments in the vegetative parts as well as brown pigments in the seed coat. The TT19 gene was isolated by chromosome walking and a candidate gene approach, and was shown to be a member of the Arabidopsis glutathione S-transferase (GST) gene family. Heterologous expression of a putative ortholog, petunia anthocyanin 9 (AN9), in tt19 complemented the anthocyanin accumulation but not the brown pigmentation in the seed coat. This suggests that the TT19 gene is required for vacuolar uptake of anthocyanins into vacuoles, but that it has also a function different from that of AN9. The depositional pattern of PA precursors in the mutant was different from that in the wild type. These results indicate that TT19 participates in the PA pathway as well as the anthocyanin pathway of Arabidopsis. As involvement of GST in the PA pathway was previously considered unlikely, the function of TT19 in the PA pathway is also discussed in the context of the putative transporter for PA precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号