首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Developmental mechanisms of segmentation appear to be varied among insects in spite of their conserved body plan. Although the expression patterns of the segment polarity genes in all insects examined imply well conserved function of this class of genes, expression patterns and function of the pair-rule genes tend to exhibit diversity. To gain further insights into the evolution of the segmentation process and the role of pair-rule genes, we have examined expression and function of an ortholog of the Drosophila pair-rule gene even-skipped (eve) in a phylogenetically basal insect, Gryllus bimaculatus (Orthoptera, intermediate germ cricket). We find that Gryllus eve (Gb'eve) is expressed as stripes in each of the prospective gnathal, thoracic, and abdominal segments and as a broad domain in the posterior growth zone. Dynamics of stripe formation vary among Gb'eve stripes, representing one of the three modes, the segmental, incomplete pair-rule, and complete pair-rule mode. Furthermore, we find that RNAi suppression of Gb'eve results in segmentation defects in both anterior and posterior regions of the embryo. Mild depletion of Gb'eve shows a pair-rule-like defect in anterior segments, while stronger depletion causes a gap-like defect showing deletion of anterior and posterior segments. These results suggest that Gb'eve acts as a pair-rule gene at least during anterior segmentation and also has segmental and gap-like functions. Additionally, Gb'eve may be involved in the regulation of hunchback and Krüppel expression. Comparisons with eve functions in other species suggest that the Gb'eve function may represent an intermediate state of the evolution of pair-rule patterning by eve in insects.  相似文献   

3.
Segmentation in long germband insects such as Drosophila occurs essentially simultaneously across the entire body. A cascade of segmentation genes patterns the embryo along its anterior-posterior axis via subdivision of the blastoderm. This is in contrast to short and intermediate germband modes of segmentation where the anterior segments are formed during the blastoderm stage and the remaining posterior segments arise at later stages from a posterior growth zone. The biphasic character of segment generation in short and intermediate germ insects implies that different formative mechanisms may be operating in blastoderm-derived and germband-derived segments. In Drosophila, the gap gene Krüppel is required for proper formation of the central portion of the embryo. This domain of Krüppel activity in Drosophila corresponds to a region that in short and intermediate germband insects spans both blastoderm and germband-derived segments. We have cloned the Krüppel homolog from the milkweed bug, Oncopeltus fasciatus (Hemiptera, Lygaeidae), an intermediate germband insect. We find that Oncopeltus Krüppel is expressed in a gap-like domain in the thorax during the blastoderm and germband stages of embryogenesis. In order to investigate the function of Krüppel in Oncopeltus segmentation, we generated knockdown phenotypes using RNAi. Loss of Krüppel activity in Oncopeltus results in a large gap phenotype, with loss of the mesothoracic through fourth abdominal segments. Additionally, we find that Krüppel is required to suppress both anterior and posterior Hox gene expression in the central portion of the germband. Our results show that Krüppel is required for both blastoderm-derived and germband-derived segments and indicate that Krüppel function is largely conserved in Oncopeltus and Drosophila despite their divergent embryogenesis.  相似文献   

4.
In short and intermediate germ insects, only the anterior segments are specified during the blastoderm stage, leaving the posterior segments to be specified later, during embryogenesis, which differs from the segmentation process in Drosophila, a long germ insect. To elucidate the segmentation mechanisms of short and intermediate germ insects, we have investigated the orthologs of the Drosophila segmentation genes in a phylogenetically basal, intermediate germ insect, Gryllus bimaculatus (Gb). Here, we have focused on its hunchback ortholog (Gb'hb), because Drosophila hb functions as a gap gene during anterior segmentation, referred as a canonical function. Gb'hb is expressed in a gap pattern during the early stages of embryogenesis, and later in the posterior growth zone. By means of embryonic and parental RNA interference for Gb'hb, we found the following: (1) Gb'hb regulates Hox gene expression to specify regional identity in the anterior region, as observed in Drosophila and Oncopeltus; (2) Gb'hb controls germband morphogenesis and segmentation of the anterior region, probably through the pair-rule gene, even-skipped at least; (3) Gb'hb may act as a gap gene in a limited region between the posterior of the prothoracic segment and the anterior of the mesothoracic segment; and (4) Gb'hb is involved in the formation of at least seven abdominal segments, probably through its expression in the posterior growth zone, which is not conserved in Drosophila. These findings suggest that Gb'hb functions in a non-canonical manner in segment patterning. A comparison of our results with the results for other derived species revealed that the canonical hb function may have evolved from the non-canonical hb functions during evolution.  相似文献   

5.
Insects such as Drosophila melanogaster undergo a derived form of segmentation termed long germband segmentation. In long germband insects, all of the body regions are specified by the blastoderm stage. Thus, the entire body plan is proportionally represented on the blastoderm. This is in contrast to short and intermediate germband insects where only the most anterior body regions are specified by the blastoderm stage. Posterior segments are specified later in embryogenesis during a period of germband elongation. Although we know much about Drosophila segmentation, we still know very little about how the blastoderm of short and intermediate germband insects is allocated into only the anterior segments, and how the remaining posterior segments are produced. In order to gain insight into this type of embryogenesis, we have investigated the expression and function of the homolog of the Drosophila gap gene hunchback in an intermediate germ insect, the milkweed bug, Oncopeltus fasciatus. We find that Oncopeltus hunchback (Of'hb) is expressed in two phases, first in a gap-like domain in the blastoderm and later in the posterior growth zone during germband elongation. In order to determine the genetic function of Of'hb, we have developed a method of parental RNAi in the milkweed bug. Using this technique, we find that Oncopeltus hunchback has two roles in anterior-posterior axis specification. First, Of'hb is required to suppress abdominal identity in the gnathal and thoracic regions. Subsequently, it is then required for proper germband growth and segmentation. In milkweed bug embryos depleted for hunchback, these two effects result in animals in which a relatively normal head is followed by several segments with abdominal identity. This phenotype is reminiscent to that found in Drosophila hunchback mutants, but in Oncopeltus is generated through the combination of the two separate defects.  相似文献   

6.
7.
ABSTRACT: BACKGROUND: A hallmark of Drosophila segmentation is the stepwise subdivision of the body into smaller and smaller units, and finally into the segments. This is achieved by the function of the well-understood segmentation gene cascade. The first molecular sign of a segmented body appears with the action of the pair rule genes, which are expressed as transversal stripes in alternating segments. Drosophila development, however, is derived, and in most other arthropods only the anterior body is patterned (almost) simultaneously from a pre-existing field of cells; posterior segments are added sequentially from a posterior segment addition zone. A long-standing question is to what extent segmentation mechanisms known from Drosophila may be conserved in short-germ arthropods. Despite the derived developmental modes, it appears more likely that conserved mechanisms can be found in anterior patterning. RESULTS: Expression analysis of pair rule gene orthologs in the blastoderm of the pill millipede Glomeris marginata (Myriapoda: Diplopoda) suggests that these genes are generally involved in segmenting the anterior embryo. We find that the Glomeris pairberry-1 (pby-1) gene is expressed in a pair rule pattern that is also found in insects and a chelicerate, the mite Tetraynchus urticae. Other Glomeris pair rule gene orthologs are expressed in double segment wide domains in the blastoderm, which at subsequent stages split into two stripes in adjacent segments. CONCLUSIONS: The expression patterns of the millipede pair rule gene orthologs resemble pair rule patterning in Drosophila and other insects, and thus represent evidence for the presence of an ancestral pair rule-like mechanism in myriapods. We discuss the possibilities that blastoderm patterning may be conserved in long-germ and short-germ arthropods, and that a posterior double segmental mechanism may be present in short-germ arthropods.  相似文献   

8.
In the long-germband insect Drosophila, all body segments and posterior terminal structures, including the posterior gut and anal pads, are specified at the blastoderm stage. In short- and intermediate-germband insects, however, posterior segments are sequentially produced from the posterior growth zone, a process resembling somitogenesis in vertebrates, and invagination of the posterior gut starts after anteroposterior (AP) axial elongation from the growth zone. The mechanisms underlying posterior segmentation and terminal patterning in these insects are poorly understood. In order to elucidate these mechanisms, we have investigated the roles of the Brachyury/brachyenteron (Bra/byn) homolog in the intermediate-germband cricket Gryllus bimaculatus. Loss-of-function analysis by RNA interference (RNAi) revealed that Gryllus byn (Gb'byn) is not required for AP axial elongation or normal segment formation, but is required for specification of the posterior gut. We also analyzed Gryllus caudal (Gb'cad) RNAi embryos using in situ hybridization with a Gb'byn probe, and found that Gb'cad is required for internalization of the posterior gut primordium, in addition to AP axial elongation. These results suggest that the functions of byn and cad in posterior terminal patterning are highly conserved in Gryllus and Drosophila despite their divergent posterior patterning. Moreover, because it is thought that the progressive growth of the AP axis from the growth zone, controlled by a genetic program involving Cdx/cad and Bra/byn, might be ancestral to bilaterians, our data suggest that the function of Bra/byn in this process might have been lost in insects.  相似文献   

9.
10.
Unlike most Hox cluster genes, with their canonical role in anterior-posterior patterning of the embryo, the Hox3 orthologue of insects has diverged. Here, we investigate the zen orthologue in Oncopeltus fasciatus (Hemiptera:Heteroptera). As in other insects, the Of-zen gene is expressed extraembryonically, and RNA interference (RNAi) experiments demonstrate that it is functionally required in this domain for the proper occurrence of katatrepsis, the phase of embryonic movements by which the embryo emerges from the yolk and adjusts its orientation within the egg. After RNAi knockdown of Of-zen, katatrepsis does not occur, causing embryos to complete development inside out. However, not all aspects of expression and function are conserved compared to grasshopper, beetle, and fly orthologues. Of-zen is not expressed in the extraembryonic tissue until relatively late, suggesting it is not involved in tissue specification. Within the extraembryonic domain, Of-zen is expressed in the outer serosal membrane, but unlike orthologues, it is not detectable in the inner extraembryonic membrane, the amnion. Thus, the role of zen in the interaction of serosa, amnion, and embryo may differ between species. Of-zen is also expressed in the blastoderm, although this early expression shows no apparent correlation with defects seen by RNAi knockdown.  相似文献   

11.
In long germ embryos, all body segments are specified simultaneously during the blastoderm stage. In contrast, in short germ embryos, only the anterior segments are specified during the blastoderm stage, leaving the rest of the body plan to be specified later. The striking embryological differences between short and long germ segmentation imply fundamental differences in patterning at the molecular level. To gain insights into the segmentation mechanisms of short germ insects, we have investigated the role of the homologue of the Drosophila gap gene hunchback (hb) in a short germ insect Locusta migratoria manilensi by paternal RNA interference (RNAi). Phenotypes resulting from hb knockdown were categorized into three classes based on severity. In the most extreme case, embryos developed the most anterior structures only, including the labrum, antennae and eyes. The following conclusions were drawn: (i) L. migratoria manilensis hb (Lmm'hb) controls germ band morphogenesis and segmentation in the anterior region; (ii) Lmm'hb may function as a gap gene in a wide domain including the entire gnathum and thorax; and (iii) Lmm'hb is required for proper growth of the posterior germ band. These findings suggest a more extensive role for L. migratoria manilensis hunchback in anterior patterning than those described in Drosophila.  相似文献   

12.
Segmentation is well understood in Drosophila, where all segments are determined at the blastoderm stage. In the flour beetle Tribolium castaneum, as in most insects, the posterior segments are added at later stages from a posteriorly located growth zone, suggesting that formation of these segments may rely on a different mechanism. Nevertheless, the expression and function of many segmentation genes seem conserved between Tribolium and Drosophila. We have cloned the Tribolium ortholog of the abdominal gap gene giant. As in Drosophila, Tribolium giant is expressed in two primary domains, one each in the head and trunk. Although the position of the anterior domain is conserved, the posterior domain is located at least four segments anterior to that of Drosophila. Knockdown phenotypes generated with morpholino oligonucleotides, as well as embryonic and parental RNA interference, indicate that giant is required for segment formation and identity also in Tribolium. In giant-depleted embryos, the maxillary and labial segment primordia are normally formed but assume thoracic identity. The segmentation process is disrupted only in postgnathal metamers. Unlike Drosophila, segmentation defects are not restricted to a limited domain but extend to all thoracic and abdominal segments, many of which are specified long after giant expression has ceased. These data show that giant in Tribolium does not function as in Drosophila, and suggest that posterior gap genes underwent major regulatory and functional changes during the evolution from short to long germ embryogenesis.  相似文献   

13.
Segmentation, i.e. the subdivision of the body into serially homologous units, is one of the hallmarks of the arthropods. Arthropod segmentation is best understood in the fly Drosophila melanogaster. But different from the situation in most arthropods in this species all segments are formed from the early blastoderm (so called long-germ developmental mode). In most other arthropods only the anterior segments are formed in a similar way (so called short-germ developmental mode). Posterior segments are added one at a time or in pairs of two from a posterior segment addition zone. The segmentation mechanisms are not universally conserved among arthropods and only little is known about the genetic patterning of the anterior segments. Here we present the expression patterns of the insect head patterning gene orthologs hunchback (hb), orthodenticle (otd), buttonhead-like (btdl), collier (col), cap-n-collar (cnc) and crocodile (croc), and the trunk gap gene Krüppel (Kr) in the myriapod Glomeris marginata. Conserved expression of these genes in insects and a myriapod suggests that the anterior segmentation system may be conserved in at least these two classes of arthropods. This finding implies that the anterior patterning mechanism already existed in the last common ancestor of insects and myriapods.  相似文献   

14.
15.
Delta/Notch signaling controls a wide spectrum of developmental processes, including body and leg segmentation in arthropods. The various functions of Delta/Notch signaling vary among species. For instance, in Cupiennius spiders, Delta/Notch signaling is essential for body and leg segmentation, whereas in Drosophila fruit flies it is involved in leg segmentation but not body segmentation. Therefore, to gain further insight into the functional evolution of Delta/Notch signaling in arthropod body and leg segmentation, we analyzed the function of the Delta (Gb'Delta) and Notch (Gb'Notch) genes in the hemimetabolous, intermediate-germ cricket Gryllus bimaculatus. We found that Gb'Delta and Gb'Notch were expressed in developing legs, and that RNAi silencing of Gb'Notch resulted in a marked reduction in leg length with a loss of joints. Our results suggest that the role of Notch signaling in leg segmentation is conserved in hemimetabolous insects. Furthermore, we found that Gb'Delta was expressed transiently in the posterior growth zone of the germband and in segmental stripes earlier than the appearance of wingless segmental stripes, whereas Gb'Notch was uniformly expressed in early germbands. RNAi knockdown of Gb'Delta or Gb'Notch expression resulted in malformation in body segments and a loss of posterior segments, the latter probably due to a defect in posterior growth. Therefore, in the cricket, Delta/Notch signaling might be required for proper morphogenesis of body segments and posterior elongation, but not for specification of segment boundaries.  相似文献   

16.
Arthropods, vertebrates, and annelids all have a segmented body. Our recent discovery of involvement of Notch-signalling in spider segmentation revived the discussion on the origin of segmented body plans and suggests the sharing of a common genetic program in a common ancestor. Here, we analysed the spider homologues of the Suppressor of Hairless and Presenilin genes, which encode components of the canonical Notch-pathway, to further explore the role of Notch-signalling in spider segmentation. RNAi silencing of two spider Suppressor of Hairless homologues and the spider Presenilin homologue causes severe segmentation phenotypes. The most prominent defect is the consistent breakdown of segmentation after the formation of three (Suppressor of Hairless) or five (Presenilin) opisthosomal segments. These phenotypes indicate that Notch-signalling during spider segmentation likely involves the canonical pathway via Presenilin and Suppressor of Hairless. Furthermore, it implies that Notch-signalling influences both the formation and patterning of the spider segments: it is required for the specification of the posterior segments and for proper specification of the segment boundaries. We argue that alternative, partly redundant, pathways might act in the formation of the anterior segments that are not active in the posterior segments. This suggests that at least some differences exist in the specification of anterior and posterior segments of the spider, a finding that may be valid for most short germ arthropods. Our data provide additional evidence for the similarities of Notch-signalling in spider segmentation and vertebrate somitogenesis and strengthen our previous notion that the formation of the segments in arthropods and vertebrates might have shared a genetic program in a common ancestor.  相似文献   

17.
Segment formation in the long germ insect Drosophila is dominated by overlapping gap gene domains in the syncytial blastoderm. In the short germ beetle Tribolium castaneum abdominal segments arise from a cellular growth zone, implying different patterning mechanisms. We describe here the single Tribolium ortholog of the Drosophila genes knirps and knirps-related (called Tc-knirps). Tc-knirps expression is conserved during head patterning and at later stages. However, posterior Tc-knirps expression in the ectoderm is limited to a stripe in A1, instead of a broad abdominal domain covering segment primordia A2-A5 as in Drosophila. Tc-knirps RNAi yields only mild defects in the abdomen, at a position posterior to the abdominal Tc-knirps domain. In addition, Tc-knirps RNAi larvae lack the antennal and mandibular segments. These defects are much more severe than the head defects caused by combined inactivation of Dm-knirps and Dm-knirps-related. Our findings support the notion that the role of gap gene homologs in abdominal segmentation differs fundamentally in long and short germ insects. Moreover, the pivotal role of Tc-knirps in the head suggests an ancestral role for knirps as head patterning gene. Based on this RNAi analysis, Tc-knirps functions neither in the head nor the abdomen as a canonical gap gene.  相似文献   

18.
Insect embryo segmentation is largely divided into long and short germ types. In the long germ type, each segment primordium is represented on a large embryonic rudiment of the blastoderm, and segmental patterning occurs nearly simultaneously in the syncytium. In the short germ type, however, only anterior segments are represented in the small embryonic rudiment, usually located on the egg posterior, and the rest of the segments are added sequentially from the posterior growth zone in a cellular context. The long germ type is thought to have evolved from the short germ type. It is proposed that this transition, which appears to have occurred multiple times over the course of evolution, was realized through the acquisition of a localized anterior instruction center. Here, I examined the early segmentation process in the silkmoth Bombyx mori, a lepidopteran insect, in which the mechanisms of anterior-posterior (AP) axis formation have not been well analyzed. In this insect, both the long germ and short germ features have been reported. The mRNAs for two key genes involved in insect AP axis formation, orthodenticle (Bm-otd) and caudal (Bm-cad), are localized maternally in the germ anlage, where they act as anterior and posterior instruction centers, respectively. RNAi studies indicate that, while Bm-cad affects the formation of all the even skipped (Bm-eve) stripes, there is also anterior Bm-eve stripe formation activity that involves Bm-otd. Thus, there is redundancy in Bm-eve stripe formation activity that must be coordinated. Some genetic interactions, identified either experimentally or hypothetically, are also introduced, which might enable robust AP formation in this organism.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号