首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Journal of Membrane Biology - Endogenous membrane protein kinase activity in fresh erythrocyte ghosts is altered in myotonic muscular dystrophy. Phosphorylation of erythrocyte Component a,...  相似文献   

2.
3.
Summary A fraction of erythrocyte Band 3 (M r , 93,000) glycoprotein that demonstrates decreased autophosphorylation in membranes from myotonic muscular dystrophy patients is demonstrated. Sequential affinity chromatography of Triton X-100 solubilized erythrocyte membrane proteins separated three specifically retained glycoprotein fractions on a Ricin Communis I-Sepharose 4B column. One fraction contains a portion of the major sialoglycoprotein (apparentM r , 78,000) and is specifically eluted from the column by 10mm NaCl and 100mm d-galactose (10/100). The two other glycoprotein fractions are eluted by 100mm NaCl, 10mm d-galactose (100/10) and 100mm NaCl, 100mm d-galactose (100/100). The composition of both fractions contains greater than 95% Band 3 (apparentM r , 93,000) glycoprotein.The quantities of glycoprotein in each fraction obtained from erythrocytes of myotonic dystrophy patients did not differ from the quantities obtained from control erythrocytes. Following endogenous protein kinase incubations of ghosts with [-32P]ATP, the specific [32P] phosphorylation of the 10/100 and 100/10 fractions are identical. The 100/100 fraction, which makes up approximately 3% of the total erythrocyte membrane protein, demonstrates a different pattern for myotonic dystrophy patients; specific phosphorylation was reduced by 50% relative to activity in control experiments. These findings are consistent with previous experiments that demonstrated decreased autophosphorylation of the glycoprotein portion of Band 3 (Roses & Appel, 1975,J. Membrane Biol. 20: 51) and are consistent with the autosomal dominant mode of inheritance in this disease.  相似文献   

4.
5.
6.
Component a of the erythrocyte membrane is a specific substrate for endogenous protein kinase activity and its phosphorylation is significantly decreased under assay conditions in myotonic muscular dystrophy (Roses, A. D., and Appel, S. H., J. Membr. Biol. 20:51–58 (1975)). We have demonstrated substrate heterogeneity of two fractions of component a separated by concanavalin A (Con-A) sepharose chromatography. The fraction of component a that is retarded by Con A and eluted with α-methyl-D-glucoside does not accept the transfer of phosphate from [γ-32P] ATP as a substrate for endogenous protein kinase activity. The nonretarded fraction contains > 90% of the radioactive label. These experiments also confirm the carbohydrate heterogeneity of component a (Findley, J. B. C., J. Biol. Chem. 249:4398 (1974)).  相似文献   

7.
8.
An increased rigidity of erythrocyte membranes in four-week old dystrophic chickens compared to closely related normal controls has been suggested using electron spin resonance. These findings suggest that similar to the case of human Duchenne muscular dystrophy, chicken muscular dystrophy may be associated with a generalized membrane defect.  相似文献   

9.
10.
Comparison of electron spin resonance spectra of spin labeled erythrocyte membranes from patients with the dystrophic conditions Duchenne and myotonic muscular dystrophy with those of normal controls suggests that alterations in membrane protein conformation and/or organization are present in these disease states. These protein alterations are not apparent in the non-dystrophic disease congenital myotonia. The results suggest a correlation between changes in the physical state of proteins in membranes with the presence of dystrophy. In addition, the present results from erythrocytes lend support for the concept of a generalized membrane defect in these diseases.  相似文献   

11.
Comparison of electron spin resonance spectra of spin labeled erythrocyte membranes from patients with the dystrophic conditions Duchenne and myotonic muscular dystrophy with those of normal controls suggests that alterations in membrane protein conformation and/or organization are present in these disease states. These protein alterations are not apparent in the nondystrophic disease congenital myotonia. The results suggest a correlation between changes in the physical state of protein in membranes with the presence of dystrophy. In addition, the present results from erythrocytes lend support for the concept of a generalized membrane defect in these diseases.  相似文献   

12.
13.
Myotonic dystrophy (DM) is a dominant neuromuscular disease that results from an unstable CTG-repeat expansion in the 3' UTR of the myotonin kinase gene at 19q13.3. This repeat is normally polymorphic with a trimodal distribution reflecting 5-, 11-17-, and 19-30-repeat-length alleles. An absolute association between expanded CTG alleles and the 1-kb insertion allele of an intragenic polymorphism in Caucasians has led to the proposal that the 5-repeat allele gives rise to alleles of 19-30 repeats, from which expanded alleles are derived, a transition not involving the 11-17-repeat alleles. A survey of eight global populations confirms the stability of the 11-17-repeat alleles but shows disociation between the 1-kb insertion polymorphism and both the 5- and 19-30-repeat-length alleles. These data indicate more than one ancestral allele from which expanded alleles are derived and suggest that widely variable population frequencies of DM may reflect distinct frequencies of such predisposed alleles.  相似文献   

14.
Insulin resistance in myotonic dystrophy.   总被引:1,自引:0,他引:1  
M G Piccardo  G Pacini  M Rosa  R Vichi 《Enzyme》1991,45(1-2):14-22
The aim of the present study was to obtain a comprehensive picture of the rate of insulin secretion and of tissue sensitivity to the endogenous hormone in myotonic dystrophy patients (MyD). The minimal model approach was utilized for the analysis of frequently sampled intravenous glucose tolerance test data (FSIGT). This method provided the characteristic parameters: SI, insulin sensitivity index; SG fractional glucose disappearance independent of dynamic insulin; n, fractional insulin clearance; phi 1 and phi 2 first and second phase insulin delivery sensitivities to glucose stimulation. In MyD patients SI was reduced (p less than 0.01) by 71% to 1.4 +/- 0.3 x 10(-4) min-1/(microU/ml), whereas in controls it was 4.85 +/- 0.77; SG was within the normal range: 0.044 +/- 0.012 min-1 in MyD patients and 0.036 +/- 0.017 min-1 in controls; phi 1 increased in MyD patients (7.4 +/- 1.3 min (microU/ml)/(mg/dl) versus 4.1 +/- 1.2 in controls); phi 2 increased in MyD patients (126 +/- 47 x 10(4) min-2/(microU/ml)/(mg/dl) versus 17 +/- 6 in controls; p less than 0.05). MyD patients showed a normal tolerance with the glucose disappearance constant, KG within the normal range: 2.75 versus 2.62% min-1 in controls. In MyD patients insulin resistance was associated with a higher than normal insulin delivery for both secretory phases, although the second phase was responsible for releasing a greater amount of hormone. In conclusion MyD patients try to compensate for overall insulin resistance by a more marked pancreatic response.  相似文献   

15.
Dysferlin and the plasma membrane repair in muscular dystrophy   总被引:13,自引:0,他引:13  
Muscular dystrophy covers a group of genetically determined disorders that cause progressive weakness and wasting of the skeletal muscles. Dysferlin was identified as a gene mutated in limb-girdle muscular dystrophy (type 2B) and Miyoshi myopathy. The discovery of dysferlin revealed a new family of proteins, known as the ferlin family, which includes four different genes. Recent work suggests the function of dysferlin in membrane repair and demonstrates that defective membrane repair is a novel mechanism of muscle degeneration. These findings reveal the importance of a basic cellular function in skeletal muscle and a new class of muscular dystrophy where the defect lies in the maintenance, not the structure, of the plasma membrane. Here, we discuss the current knowledge of dysferlin function in the repair of the plasma membrane of the skeletal muscle cells.  相似文献   

16.
17.
Erythrocyte membranes and their liposomes were prepared from clinically normal dogs and Labrador retrievers with hereditary muscular dystrophy. The static and dynamic components of fluidity of each membrane were then assessed by steady-state fluorescence polarization techniques using limiting hindered fluorescence anisotropy and order parameter values of 1,6-diphenyl-1,3,5-hexatriene (DPH) and fluorescence anisotropy values ofdl-2-(9-anthroyl)-stearic acid anddl-12-(9-anthroyl)-stearic acid, respectively. Membrane lipids were extracted and analyzed by thin-layer chromatography and gas chromatography. The results of these studies demonstrated that the lipid fluidity of erythrocyte membranes, and their liposomes, prepared from dystrophic dogs were found to possess significantly lower static and dynamic components of fluidity than control counterparts. Analysis of the composition of membranes from dystrophic dogs revealed a higher ratio of saturated fatty acyl chain/unsaturated chains (w/w) and lower double-bond index. Alterations in the fatty acid composition such as decrease in levels of linoleic (18:2) and arachidonic (20:4) acids and increase in palmitic (16:0) and stearic (18:0) acids were also observed in the membranes of dystrophic animals. These associated fatty acyl alterations could explain, at least in part, the differences in membrane fluidity between dystrophic and control dogs.  相似文献   

18.
(Na++K+)-ATPase of Duchenne muscular dystrophy erythrocyte ghosts.   总被引:2,自引:0,他引:2  
T W Pearson 《Life sciences》1978,22(1):127-132
Adenosine triphosphatase (ATPase) activity of erythrocyte ghosts from Duchenne muscular dystrophy (DMD) patients and carriers was stimulated by ouabain while nonmyopathic donor preparations were inhibited. Ethacrynic acid was an effective inhibitor in both DMD patients and carriers as well as in controls. However, responsiveness of the enzyme to suramin and harmaline generally differed in DMD groups from that of nonmyopathic donors. These data are consistent with the hypothesis that modified affinity of Na binding site(s) may account for some properties of the (Na++K+)-ATPase activity of DMD erythrocytes.  相似文献   

19.
Ethics of a genetic program for myotonic dystrophy.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号