首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rates of nitrogen (N) deposition have been historically high throughout much of the northeastern United States; thus, understanding the legacy of these high N loads is important for maintaining forest productivity and resilience. Though many studies have documented plant invasions due to N deposition and associated impacts on ecosystems, less is known about whether invasive plants will continue to increase in dominance with further shifting nutrient regimes. Using soil N and carbon additions, we examined the impact of both increasing and decreasing soil N on native and invasive understory plant dynamics over 4 years in a northeastern deciduous forest with a long history of N deposition. Despite applying large quantities of N, we found no difference in soil nitrate (NO3) or ammonium (NH4 +) pools in N addition plots over the course of the study. Indicative of the potential N saturation in these forest soils, resin-available NO3 ? and NH4 + showed evidence that the added N was rapidly moving out of the soil in N addition plots. Accordingly, we also found that adding N to soil altered neither invasive nor native plant abundance, though adding N temporally increased invasive plant richness. Carbon additions decreased soil N availability seasonally, but did not alter the total percent cover of invasive or native plants. Rather than being suppressed by excess N availability, native plant species in this ecosystem are primarily inhibited by the invasive species, which now dominate this site. In conclusion, understory plant communities in this potentially N-saturated ecosystem may be buffered to future alterations in N availability.  相似文献   

2.
本文根据Wang和BMdocchi(1989)最近提出的冠层辐射模型,进一步给出了一个模拟冠层光合作用速率和气孔传导率的模式.模式将冠层中每一层的叶面积分为向光叶、半影叶、和全遮荫叶三种,并分别计算其光合作用速率和气孔传导率。计算得到的光合速率廓线表明,在落叶阔叶林内,冠层下部的叶片常处于光照不足状态;半影效应使得透过林冠达于底部的辐射量增大,这对于林下植物的光合作用是有利的。 模式计算值与实测值之间的微弱差别应归因于纯辐射模型无法考虑湍流输送机制造成的CO_2传输和冠层底部耐荫性叶对于低光照的适应能力。  相似文献   

3.
4.
The relationship between shoot hydraulic conductance (L) and stomatal sensitivity to changes in leaf water status was studied in the saplings of six deciduous tree species. L increased significantly in sequence: Acer platanoides < Tilia Cordata < Padus avium = Quercus robur < Salix caprea = Populus tremula. L was higher in the trees grown in soil with a higher nitrogen content and lower in the trees grown under mild water stress or kept in darkness for several days. L was higher in July than in September in all the species. L correlated positively with maximum photosynthesis, stomatal conductance and stomatal sensitivity to an increase in leaf water potential, but negatively with stomatal sensitivity to a decrease in leaf water potential. The correlations between L and any other parameter were approximated by three different curves: data for water-stressed plants fit to the first, data for plants kept in darkness fit to the second and all the other data fit to the third curve. The reasons of the differences of shoot hydraulic conductance in the different experimental sets and the mechanisms which may cause the correlation between L and the other characteristics are discussed.  相似文献   

5.
云南哀牢山栎类次生林树种多样性特征研究   总被引:7,自引:0,他引:7  
在哀牢山徐家坝地区,采用样方调查的方法对中山湿性常绿阔叶林受到人为破坏后形成的栎类次生林的树种多样性特征进行了研究。结果表明,恢复约40a的栎类次生林的乔木树种组成主要以云南越桔(Vacciniumduclouxii)为主。树种的萌生现象非常突出,超过2/3的树种具有萌生现象,在DBH≥3cm的植株中有72.7%是由无性系萌株产生的。栎类次生林乔木的密度随高度级、径级的增加而递减,但树种丰富度却不随树木的密度增加而增加。以Shannon-Wiener指数H、Simpson指数D和Fisher指数α计算了栎类次生林的树种多样性(H=1.42±0.27;D=0.65±0.09;α=2.59±1.16),并与中山湿性常绿阔叶林的树种多样性进行了比较,结果显示处于演替顶级阶段的中山湿性常绿阔叶林具有更高的树种多样性。  相似文献   

6.
Little is known about the importance of the forest overstorey relative to other factors in controlling the spatial variability in understorey species composition in near-natural temperate broadleaved forests. We addressed this question for the 19 ha ancient forest Suserup Skov (55°22′ N, 11°34′ E) in Denmark, one of the few old-growth temperate broadleaved forest remnants in north-western Europe, by inventorying understorey species composition and environmental conditions in 163 100 m2 plots. We use unconstrained and constrained ordinations, variation partitioning, and Indicator Species Analysis to provide a quantitative assessment of the importance of the forest overstorey in controlling understorey species composition. Comparison of the gradients extracted by unconstrained and constrained ordinations showed that the main gradients in understorey species composition in our old-growth temperate broadleaved forest remnant are not caused by variability in the forest overstorey, but are related to topography and soil, edge effects, and unknown broad-scale factors. Nevertheless, overstorey-related variables uniquely accounted for 15% of the total explained variation in understorey species composition, with the pure overstorey-related (Rpo), topography and soil (Rpt), edge and anthropogenic disturbance effects (Rpa), and spatial (Rps) variation fractions being of equal magnitude. The forward variable selection showed that among the overstorey-related variables understorey light availability and to a lesser extent vertical forest structure were most important for understorey species composition. No unique influence of overstorey tree species identity could be documented. There were many indicator species for high understorey light levels and canopy gap centres, but none for medium or low light or closed canopy. Hence, no understorey species behaved as obligate shade plants. Our study shows that, the forest overstorey has a weak control of understorey species composition in near-natural broadleaved forest, in contrast to results from natural and managed forests comprising both conifer and broadleaved species. Nevertheless, >20% of the understorey species found were indicators of high light conditions or canopy openings. Hence, variability in canopy structure and understorey light availability is important for maintaining understorey species diversity.  相似文献   

7.
Tetramerista glabra has a remarkable combination of life history traits. It is a dense-wooded, large, common canopy tree in primary peat swamp rain forest. Its seedlings, although shade tolerant, can grow rapidly in high light conditions, but frequently lack structural stability. Most juvenile stems (94% in the understory and 38% in canopy gaps) collapse under their own weight or from branchfalls. Fallen stems then ramify into vegetative sprouts, which in turn may collapse, perpetuating a vegetative juvenile cycle. Most recruitment is from sprouts rather than from seed. Structural analysis of stem dimensions shows that stems 2–8 cm DBH (diameter at breast height) are close to the theoretical buckling limit, especially for those dependent on neighboring vegetation to maintain vertical form. Trees > 4 cm DBH persisting as upright stems develop stilt root support and become structurally independent at ca 8 cm DBH. Eventually, as stems thicken, stilt roots anastamose and trees adopt the cylindrical growth form of mature canopy trees (up to 150 cm DBH). Thus, the vegetative life history strategy of the species is to: (i) regenerate a large “ramet bank” from the majority of juveniles that fail structurally while suppressed in the understoty, and (ii) to maximize height growth at the expense of diameter growth in high light conditions. The growth pattern and plastic form of T. glabra shows how a shade tolerant species may adapt to utilize the ephemeral light resource in canopy gaps. The growth strategy of this species allows it to circumvent the normal trade-off between shade tolerance and rapid growth in canopy gaps.  相似文献   

8.
As nitrogen is known to be a limiting factor for plant growth, we were interested in the relationship between soil microbial activity and the nitrogen assimilation of 5 different halophytes from 4 saline sites near the lake “Neusiedlersee”, Austria. The following were studied between May and October 1985: nitrogen fixation (15N2 and acetylene reduction): N-mineralization; several soil characteristics and in vivo nitrate reductase activity of roots and shoots of these plants. NO?3, org. N- and carboxylate contents of both roots and shoots, as well as the effect of NO?3-fertilization on the amounts of these substances, were determined on plants growing in the field during a 3-day period in September 1985. Fertilization led to a decrease in acetylene reduction activity at most sites, and an increase in the nitrate reductase activity of the shoots of all plants. Overall, carboxylate and organic nitrogen contents of these halophytes did not change in response to fertilization. Only in the roots of Aster tripolium and Atriplex hastata was there a marked increase in the nitrate reductase activity in response to fertilization. Species growing at the same site, such as Plantago maritima and Lepidium crassifolium showed contrasting levels of assimilatory activity. Apparent low rates of ammonification and nitrification were detected in soils from the 4 sites. The results are discussed in relation to the nitrogen and carbon economies of the microorganisms and plants.  相似文献   

9.
Nitrogen Fixation in the Canopy of Temperate Forest Trees: A Re-examination   总被引:1,自引:0,他引:1  
JONES  K. 《Annals of botany》1982,50(3):329-334
15N2 studies and acetylene reduction assays of leaves and shootsof Douglas fir and other forest trees do not confirm previousreports that extensive nitrogen fixation occurs on leaf surfacesand it is concluded that the importance of nitrogen fixationin the canopy of forest trees has been exaggerated. The presenceof nitrogen-fixing bacteria on the leaves of trees is confirmed,however, and they have been identified as Enterobacter agglomerans,Clostridium butyricum and Bacillus sp. Their distribution onleaves is fortuitous since dead oak leaves and artificial leavesbecome colonized to the same extent as living oak leaves. nitrogen fixation, acetylene reduction, Enterobacter agglomerans, Clostridium butyricum, Bacillus sp, Douglas fir, Pseudotsuga menziensii, larch, Larix x oak, Quercus petraea.  相似文献   

10.
Net carbon assimilation and stomatal conductance to water vapor oscillated repeatedly in red kidney bean, Phaseolus vulgaris L., plants transferred from a natural photoperiod to constant light. In a gas exchange system with automatic regulation of selected environmental and physiological variables, assimilation and conductance oscillated with a free-running period of approximately 24.5 hours. The rhythms in carbon assimilation and stomatal conductance were closely coupled and persisted for more than a week under constant conditions. A rhythm in assimilation occurred when either ambient or intercellular CO2 partial pressure was held constant, demonstrating that the rhythm in assimilation was not entirely the result of stomatal effects on CO2 diffusion. Rhythms in assimilation and conductance were not expressed in plants grown under constant light at a constant temperature, demonstrating that the rhythms did not occur spontaneously but were induced by an external stimulus. In plants grown under constant light with a temperature cycle, a rhythm was entrained in stomatal conductance but not in carbon assimilation, indicating that the oscillators driving the rhythms differed in their sensitivity to environmental stimuli.  相似文献   

11.
12.
John A. Barone 《Biotropica》2000,32(2):307-317
The Janzen–Connell model of tropical forest tree diversity predicts that seedlings and young trees growing close to conspecific adults should experience higher levels of damage and mortality from herbivorous insects, with the adult trees acting as either an attractant or source of the herbivores. Previous research in a seasonal forest showed that this pattern of distance‐dependent herbivory occurred in the early wet season during the peak of new leaf production. I hypothesized that distance‐dependent herbivory may occur at this time because the new foliage in the canopy attracts high numbers of herbivores that are limited to feeding on young leaves. As a consequence, seedlings and saplings growing close to these adults are more likely to be discovered and damaged by these herbivores. In the late wet season, when there is little leaf production in the canopy, leaf damage is spread more evenly throughout the forest and distance dependence disappears. I tested three predictions based on this hypothesis: (1) the same species of insect herbivores attack young and adult trees of a given plant species; (2) herbivore densities increase on adult trees during leaf production; and (3) herbivore densities in the understory rise during the course of the wet season. Censuses were conducted on adults and saplings of two tree species, raribea asterolepis and Alseis blackiana. Adults and saplings of both species had largely the same suite of chewing herbivore species. On adults of Q. asterolepis, the density of chewing herbivores increased 6–10 times during leaf production, but there was no increase in herbivore density on adults of A. blackiana. Herbivore densities increased 4.5 times on A. blackiana saplings and 8.9 times on Q. asterolepis saplings during the wet season, but there were no clear trends on the adults of either species. These results suggest that the potential of adult trees as a source of herbivores on saplings depends on the value of new leaves to a tree species' herbivores, which may differ across tree species.  相似文献   

13.
We tested the relationship between the length of pasture use and the density, richness, and composition of naturally regenerating tropical seasonal deciduous forest in pastures. We sampled regenerating trees in 25 pastures distributed in four age classes ranging from < 6 to 40 yr of use. Density and composition of regenerating trees did not change with pasture age, but richness was lower in 25- and 40-yr-old pastures. Nonetheless, a number of species seem to be able to resprout even after 40 yr of ranching.  相似文献   

14.
Our current ability to detect and predict changes in forest ecosystem productivity is constrained by several limitations. These include a poor understanding of belowground productivity, the short duration of most analyses, and a need for greater examination of species- or community-specific variability in productivity studies. We quantified aboveground net primary productivity (ANPP) over 3 years (1999–2001), and both belowground NPP (BNPP) and total NPP over 2 years (2000–2001) in both mesic and xeric site community types of the mixed mesophytic forest of southeastern Kentucky to examine landscape variability in productivity and its relation with soil resource [water and nitrogen (N)] availability. Across sites, ANPP was significantly correlated with N availability (R2 = 0.58, P = 0.028) while BNPP was best predicted by soil moisture content (R2 = 0.72, P = 0.008). Because of these offsetting patterns, total NPP was unrelated to either soil resource. Interannual variability in growing season precipitation during the study resulted in a 50% decline in mesic site litter production, possibly due to a lag effect following a moderate drought year in 1999. As a result, ANPP in mesic sites declined 27% in 2000 compared to 1999, while xeric sites had no aboveground production differences related to precipitation variability. If global climate change produces more frequent occurrences of drought, then the response of mesic sites to prolonged moisture deficiency and the consequences of shifting carbon (C) allocation on C storage will become important questions.  相似文献   

15.
SYNOPSIS. The importance of the organisms and processes thatoccur in forest canopies is becoming increasingly recognizedin relation to understanding biodiversity. The upper tree canopyof many forest ecosystems fosters extremely diverse communities,particularly of vascular epiphytes and arthropods. Epiphytesalso contribute to the diversity of birds because they add tothe total amounts of resources, provide opportunities for resourcespecialization, and temporally spread available resources inthe canopy throughout the year. Epiphytes also contribute toecosystem processes such as nutrient cycling because they gainaccess to nutrient sources originating outside the ecosystemand transfer them to other members of the forest, thus functioningas a "keystone" resource.  相似文献   

16.
Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5–1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost.  相似文献   

17.
Numerous studies have demonstrated that tree survival is influenced by negative density dependence (NDD) and differences among species in shade tolerance could enhance coexistence via resource partitioning, but it is still unclear how NDD affects tree species with different shade-tolerance guilds at later life stages. In this study, we analyzed the spatial patterns for trees with dbh (diameter at breast height) ≥2 cm using the pair-correlation g(r) function to test for NDD in a temperate forest in South Korea after removing the effects of habitat heterogeneity. The analyses were implemented for the most abundant shade-tolerant (Chamaecyparis obtusa) and shade-intolerant (Quercus serrata) species. We found NDD existed for both species at later life stages. We also found Quercus serrata experienced greater NDD compared with Chamaecyparis obtusa. This study indicates that NDD regulates the two abundant tree species at later life stages and it is important to consider variation in species'' shade tolerance in NDD study.  相似文献   

18.
In contrast to studies on aboveground processes, the effect of species diversity on belowground productivity and fine-root regrowth after disturbance is still poorly studied in forests. In 12 old-growth broad-leaved forest stands, we tested the hypotheses that (i) the productivity and recovery rate (regrowth per standing biomass) of the fine-root system (root diameter < 2 mm) increase with increasing tree species diversity, and that (ii) the seasonality of fine-root biomass and necromass is more pronounced in pure than in tree species-rich stands as a consequence of non-synchronous root biomass peaks of the different species. We investigated stands with 1, 3, and 5 dominant tree species growing under similar soil and climate conditions for changes in fine-root biomass and necromass during a 12-month period and estimated fine-root productivity with two independent approaches (ingrowth cores, sequential coring). According to the analysis of 360 ingrowth cores, fine-root growth into the root-free soil increased with tree species diversity from 72 g m−2 y−1 in the monospecific plots to 166 g m−2 y−1 in the 5-species plots, indicating an enhanced recovery rate of the root system after soil disturbance with increasing species diversity (0.26, 0.34, and 0.51 y−1 in 1-, 3-, and 5-species plots, respectively). Fine-root productivity as approximated by the sequential coring data also indicated a roughly threefold increase from the monospecific to the 5-species stand. We found no indication of a more pronounced seasonality of fine-root mass in species-poor as compared to species-rich stands. We conclude that species identification on the fine root level, as conducted here, may open new perspectives on tree species effects on root system dynamics. Our study produced first evidence in support of the hypothesis that the fine-root systems of more diverse forest stands are more productive and recover more rapidly after soil disturbance than that of species-poor forests.  相似文献   

19.
Yan  Guoyong  Xing  Yajuan  Liu  Guancheng  Huang  Binbin  Wang  Qinggui 《Ecosystems》2021,24(7):1608-1623
Ecosystems - Changes in precipitation frequency and intensity are predicted to be more intense and frequent accompanying climate change and may have immediate or potentially prolonged effects on...  相似文献   

20.
Nitrogen (N) retention by tree canopies is believed to be an important process for tree nutrient uptake, and its quantification is a key issue in determining the impact of atmospheric N deposition on forest ecosystems. Due to dry deposition and retention by other canopy elements, the actual uptake and assimilation by the tree canopy is often obscured in throughfall studies. In this study, 15N-labeled solutions ( $ ^{15} {\text{NH}}_{4}^{ + } $ and $ ^{15} {\text{NO}}_{3}^{ - } $ ) were used to assess dissolved inorganic N retention by leaves/needles and twigs of European beech, pedunculate oak, silver birch, and Scots pine saplings. The effects of N form, tree species, leaf phenology, and applied $ {\text{NO}}_{3}^{ - } $ to $ {\text{NH}}_{4}^{ + } $ ratio on the N retention were assessed. Retention patterns were mainly determined by foliar uptake, except for Scots pine. In twigs, a small but significant 15N enrichment was detected for $ {\text{NH}}_{4}^{ + } $ , which was found to be mainly due to physicochemical adsorption to the woody plant surface. The mean $ {{^{15} {\text{NH}}_{4}^{ + } } \mathord{\left/ {\vphantom {{^{15} {\text{NH}}_{4}^{ + } } {^{15} {\text{NO}}_{3}^{ - } }}} \right. \kern-0em} {^{15} {\text{NO}}_{3}^{ - } }} $ retention ratio varied considerably among species and phenological stadia, which indicates that the use of a fixed ratio in the canopy budget model could lead to an over- or underestimation of the total N retention. In addition, throughfall water under each branch was collected and analyzed for $ ^{15} {\text{NH}}_{4}^{ + } $ , $ ^{15} {\text{NO}}_{3}^{ - } $ , and all major ions. Net throughfall of $ ^{15} {\text{NH}}_{4}^{ + } $ was, on average, 20 times higher than the actual retention of $ ^{15} {\text{NH}}_{4}^{ + } $ by the plant material. This difference in $ ^{15} {\text{NH}}_{4}^{ + } $ retention could not be attributed to pools and fluxes measured in this study. The retention of $ ^{15} {\text{NH}}_{4}^{ + } $ was correlated with the net throughfall of K+, Mg2+, Ca2+, and weak acids during leaf development and the fully leafed period, while no significant relationships were found for $ ^{15} {\text{NO}}_{3}^{ - } $ retention. This suggests that the main driving factors for $ {\text{NH}}_{4}^{ + } $ retention might be ion exchange processes during the start and middle of the growing season and passive diffusion at leaf senescence. Actual assimilation or abiotic uptake of N through leaves and twigs was small in this study, for example, 1–5% of the applied dissolved 15N, indicating that the impact of canopy N retention from wet deposition on forest productivity and carbon sequestration is likely limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号