首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对于养分贫瘠的盐渍化草地生态系统, 大气氮沉降如何影响土壤氮循环过程是一个目前尚未解决的问题。该研究在位于华北地区山西省右玉县境内的盐渍化草地建立了一个模拟氮沉降的试验平台, 设置8个氮添加水平, 分别为0、1、2、4、8、16、24、32 g·m-2·a-1 (N0、N1、N2、N4、N8、N16、N24、N32), 生长季5-9月, 每月月初以喷施的方式等量添加NH4NO3。从2017年5月到2019年10月, 运用顶盖PVC管法每月一次进行净氮矿化速率的测定同时计算了净氮矿化速率对不同水平氮添加的敏感性。主要结果表明: (1)高水平氮添加(N16、N24、N32)显著增加土壤无机氮库; (2)该盐渍化草地土壤氮矿化以硝化作用为主, 经过3年氮添加以后, 高氮添加(N24、N32)显著促进了土壤净硝化速率, 并且不同氮添加水平在不同的月份和年份中表现出差异性响应; (3)不同氮添加水平对土壤净氮矿化敏感性的影响在不同降水年份差异显著, 短期低水平氮添加提高了土壤净氮矿化的敏感性, 而高水平氮添加降低土壤净氮矿化敏感性; (4)盐渍化草地土壤净氮矿化速率与土壤温度和水分呈正相关关系, 与土壤pH呈负相关关系。因此, 在当前氮沉降增加的背景下, 北方盐渍化草地土壤氮矿化速率对低氮添加的敏感性较高, 结合氮沉降的特点, 未来模型预测应该同时考虑氮沉降对盐渍化草地的可能影响。  相似文献   

2.
黑河下游湿地土壤有机氮组分剖面的分布特征   总被引:1,自引:0,他引:1  
结合野外调查,用Bremner法研究了黑河下游湿地不同土壤类型的有机氮组分,结果表明:在0—50 cm土层,5种土壤有机氮均以酸解性氮为主,占全氮的71.04%—81.79%。泥炭土、沼泽土、草甸土、亚高山草甸土所含的酸解氮、非酸解氮和酸解氮组分氨态氮、氨基酸态氮、氨基糖态氮含量的剖面分布总体上均随土层深度的增加而呈降低趋势,而风沙土却相反,上述有机氮组分呈升高趋势。5种土壤酸解氮及其组分氨态氮、氨基酸态氮、氨基糖态氮占全氮比例的剖面分布总体上均随土层深度的增加而呈降低趋势,而非酸解氮却呈升高趋势。5种土壤酸解未知态氮含量及占全氮比例均在剖面分布上无明显特征。在0—30 cm各相同土层内,5种土壤酸解氮各组分含量及占全氮比例的大小顺序均为氨基酸态氮氨态氮未知态氮氨基糖态氮;而在30—50 cm土层,5种土壤酸解氮各组分含量及占全氮比例的大小顺序均无明显特征。此外,黑河下游湿地土壤干化、沙化过程中,表层0—10 cm土壤有机氮组分含量变化明显,其中土壤氨态氮对生态环境变化最为敏感。  相似文献   

3.
Commonly observed positive correlations between litter nitrogen (N) concentrations and decomposition rates suggest that N frequently limits decomposition in its early stages. However, numerous studies have found little, if any, effect of N fertilization on decomposition. I directly compared internal substrate N and externally supplied inorganic N effects on decomposition in sites varying in soil N availability. I decomposed eight substrates (with initial %N from 0–2.5) in control and N-fertilized plots at eight grassland and forest sites in central Minnesota. N fertilization increased decomposition at only two of eight sites, even though decomposition was positively related to litter N at all sites and to soil N availability across sites. The effect of externally supplied N on decomposition was independent of litter N concentration, but was greater at sites with low N availability. The inconsistent effects of substrate and externally supplied N may have arisen because decomposers use organic N preferentially as an N source; because inorganic N availability across sites or with fertilization induced changes in microbial community attributes (for example, lower C:N or greater efficiency) that reduced the response of decomposition to increased inorganic N supply; or because the positive correlation between litter N or site N availability with decomposition was spurious, caused by tight correlations between litter or site N and some other factor that truly limited decomposition. These inconsistent effects of substrate N and external N supply on decomposition suggest that the oft-observed relationship between litter N and decomposition may not indicate N limitation of decomposition.  相似文献   

4.
The clumping factor B (ClfB) of Staphylococcus aureus is a surface protein that binds to fibrinogen (Ni Eidhin, D., Perkins, S., Francois, P., Vaudaux, P., Hook, M., and Foster, T. J., 1998 Mol. Microbiol. 30, 245-257). The ligand-binding activity is located in the approximately 500-residue A-region (residues 44-542), which represents the N-terminal half of the MSCRAMM protein. We now hypothesize that the ClfB A-region is composed of three subdomains, which we have named N1, N2, and N3, respectively. To examine this hypothesis, we expressed recombinant forms of the individual putative subdomains, the tandem motifs N12 and N23, and the full-length A-region N123. Far UV circular dichroism spectra showed that each subdomain is composed mainly of beta-sheets with little or no discernible alpha-helices. Heat-induced unfolding of individual subdomains occurred with a single state transition and was reversible, indicating that the subdomains can fold as discreet units. Gel permeation chromatography indicated that N2, N3, and N23 are globular. In contrast, domain N1 appeared to be elongated and conferred a somewhat elongated structure on segments containing this subdomain (i.e. N12 or N123). N123, N12, and N23 all bound to fibrinogen, but N23 had a higher affinity for fibrinogen than that observed for the full-length A-region; N123 or for N12. However, an extended N terminus of N23 was required for ligand binding. A form of N23 that was generated by proteolytic processing and lacked the N-terminal extension was unable to bind fibrinogen. Recombinant forms of individual subdomains did not bind fibrinogen. The addition of recombinant N23 effectively inhibited ClfB-mediated bacterial adherence to fibrinogen, and N123 caused some reduction in bacterial attachment, whereas N12 was essentially inactive. Antibodies raised against the central N2 domain of the A-region were the most effective at inhibiting bacterial adhesion to immobilized fibrinogen, although anti-N3 or anti-N1 antibodies also caused some reduction in ClfB-mediated adherence to fibrinogen.  相似文献   

5.
The roles of N-linked glycosylation in the intracellular transport and biological activities of the Sendai virus hemagglutinin-neuraminidase (HN) protein were studied. The protein contains four potential N-glycosylation sites: N77, N448, N499, and N511. By site-directed mutagenesis of these positions, the mature protein contained three N-linked oligosaccharides attached to N77, N499, and N511. The role of each added oligosaccharide in the structure and functions of the protein was identified by characterization of surface expression, hemadsorption, and neuraminidase activities of the corresponding mutant proteins. Elimination of the sites of N499 and N511 had the most detrimental effect, decreasing surface expression and hemadsorption. Elimination of the sites of N77 and N448 had similar but weaker effects. Mutants missing the sites of N499 and N511 were not able to induce syncytia formation in cells expressing mutant HN proteins and the fusion protein. Therefore, the N-linked oligosaccharides attached to N499 and N511 were important for intracellular transport and for the fusion promotion.  相似文献   

6.
Analysis of sterols of Saccharomyces cerevisiae mutants N3, N15, N26, and N3H, defective in sterol biosynthesis, was performed. Strains N3, N15, and N26 were isolated from their mother strain, M10, by screening with nystatin (Nagai et al. (1980) Mie Med. J. 30, 215-224), and strain N3H was isolated from N3 as a doubly-mutated strain. The main sterols of N3, N15, N26, and N3H were ergosta-7,22-dienol, ergost-8-enol, cholesta-5,7,24-trienol, and ergosta-7,22,24(28)-trienol, respectively. The former three strains were characterized as defective in delta 5-desaturation, delta 8--delta 7 isomerization, and C-24 transmethylation. Strain N3H was found to be defective in delta 5-desaturation as well as in delta 24(28)-reduction. However, the defect of N26 and N3H was suggested to be leaky, since small amounts of ergosterol and ergosta-7,22-dienol were found in these mutants, respectively. In N15, an accumulation (2% in total sterols) of the compound likely to be hydroxylated sterol was found. By aerobic adaptation of these strains, the accumulation of these strains, the accumulations of ergosta-7,22-dienol (22 mg/g dry cells), ergosta-7,22,24(28)-trienol (24 mg), ergosta-8,24(28)-dienol (18 mg), and cholesta-8,24-dienol (22 mg) reached a maximum in N3, N3H, N15, and N26 after 20, 20, 30, and 30 h, respectively. These strains appear to be useful for making 14C-labeled and non-labeled preparations of the above sterols.  相似文献   

7.
15N自然丰度法在陆地生态系统氮循环研究中的应用   总被引:3,自引:0,他引:3       下载免费PDF全文
随着氮沉降的不断增加以及人们对全球变化问题的日益关注, 稳定同位素技术在全球变化研究中得到广泛的应用。因为植物和土壤的氮同位素组成记录了氮循环影响因子的综合作用, 并且具有测量简单以及不受取样时间和空间限制的优点, 所以氮同位素自然丰度法被用于氮循环的研究中。该文从氮循环过程中植物和土壤的氮分馏入手, 总结国内外相关文献, 阐述了植物和土壤氮自然丰度在预测生态系统氮饱和和氮循环长期变化趋势中的应用; 总结了利用树轮δ 15N法研究氮循环过程中应该注意的事项以及目前尚未解决的问题。  相似文献   

8.
四种荒漠草原植物的生长对不同氮添加水平的响应   总被引:2,自引:0,他引:2       下载免费PDF全文
大气氮(N)沉降增加加速了生态系统N循环, 从而会对生态系统的结构和功能产生巨大的影响, 尤其是一些受N限制的生态系统.研究N添加对荒漠草原植物生长的影响, 可为深入理解N沉降增加对我国北方草原群落结构的影响提供基础数据.该文基于2011年在宁夏荒漠草原设置的N沉降增加的野外模拟试验, 研究了两年N添加下4个常见物种(牛枝子(Lespedeza potaninii),老瓜头(Cynanchum komarovii),针茅(Stipa capillata)和冰草(Agropyron cristatum))不同时期种群生物量和6-8月份相对生长速率的变化特征.并通过分析物种生长与植物(群落和叶片水平)和土壤碳(C),N,磷(P)生态化学计量学特征的关系, 探讨C:N:P化学计量比对植物生长养分限制的指示作用.结果显示N添加促进了4个物种的生长, 但具有明显的种间差异性, 且这种差异也存在于相同生活型的不同物种间.总体而言, 4个物种种群生物量与叶片N浓度,叶片N:P,群落N库,土壤全N含量和土壤N:P存在明显的线性关系, 与植物和土壤C:N和C:P的相关关系相对较弱.几个物种相对生长速率与植物和土壤N:P也呈现一定程度的正相关关系, 但与其他指标相关性较弱.以上结果表明, 短期N沉降增加提高了植物的相对生长速率, 促进了植物生长, 且更有利于针茅和老瓜头的生物量积累, 从而可能会逐渐改变荒漠草原群落结构.植物N:P和土壤N:P对荒漠草原物种生长具有较强的指示作用: 随着土壤N受限性逐渐缓解, 土壤N含量和N:P相继升高, 可供植物摄取的N增多, 因而有利于植物生长和群落N库积累.  相似文献   

9.
Recovery of ectomycorrhiza after 'nitrogen saturation' of a conifer forest   总被引:1,自引:0,他引:1  
Trees reduce their carbon (C) allocation to roots and mycorrhizal fungi in response to high nitrogen (N) additions, which should reduce the N retention capacity of forests. The time needed for recovery of mycorrhizas after termination of N loading remains unknown. Here, we report the long-term impact of N loading and the recovery of ectomycorrhiza after high N loading on a Pinus sylvestris forest. We analysed the N% and abundance of the stable isotope (15) N in tree needles and soil, soil microbial fatty acid biomarkers and fungal DNA. Needles in N-loaded plots became enriched in (15) N, reflecting decreased N retention by mycorrhizal fungi and isotopic discrimination against (15) N during loss of N. Meanwhile, needles in N-limited (control) plots became depleted in (15) N, reflecting high retention of (15) N by mycorrhizal fungi. N loading was terminated after 20yr. The δ(15) N and N% of the needles decreased 6yr after N loading had been terminated, and approached values in control plots after 15yr. This decrease, and the larger contributions compared with N-loaded plots of a fungal fatty acid biomarker and ectomycorrhizal sequences, suggest recovery of ectomycorrhiza. High N loading rapidly decreased the functional role of ectomycorrhiza in the forest N cycle, but significant recovery occurred within 6-15yr after termination of N loading.  相似文献   

10.
周晓兵  尹本丰  张元明 《生态学报》2016,36(11):3197-3205
生物土壤结皮是荒漠生态系统的重要组分,其如何响应氮沉降的增加还鲜见报道。以古尔班通古特沙漠中3种不同类型生物土壤结皮为研究对象,设置0(N0)、0.3(N0.3)、0.5(N0.5)、1.0(N1)、1.5(N1.5)和3.0(N3)g N m-2a-16个不同氮素处理浓度,研究氮素增加对生物土壤结皮生长和光合生理的影响。结果表明,经过3a的模拟增氮实验,藻类结皮、地衣结皮和苔藓结皮的总叶绿素、实际光化学效率YII、可溶性糖含量以及苔藓个体生物量随着氮素增加先增加后减少,但各指标的最大值位于不同的浓度处理。氮素增加对藻类和地衣结皮类胡萝卜素影响不显著,而低氮(N0.3-N0.5)对苔藓类胡萝卜素具有促进作用。高氮(N3)对3种类型结皮的最大光化学效率Fv/Fm均具有抑制作用。氮素增加对藻类结皮和地衣结皮的可溶性蛋白影响较小,但对苔藓结皮可溶性蛋白的影响表现为先增加后降低的趋势。3种结皮类型中,苔藓结皮对氮素增加的响应最为敏感,受影响最大,其次是藻类和地衣结皮。研究表明,低浓度氮沉降对3种类型结皮生长的影响较小,但是高浓度氮沉降则具有明显的负效应。  相似文献   

11.
《植物生态学报》2016,40(2):165
Aims The increase in atmospheric N deposition has accelerated N cycling of ecosystems, thus altering the structure and function of ecosystems, especially in those limited by N availability. Studies on the response of plant growth to artificial N addition could provide basic data for a better understanding of how the structure of grasslands in northern China responds to increasing N deposition. Methods We investigated the seasonal dynamics of plant growth of four species after 2-year multi-level N addition in a field experiment conducted in a desert steppe of Ningxia in 2011. Plant biomass and the relative growth rate (RGR) of the studied species were measured and their relationships with C:N:P ratios of plants (community and leaf levels) and soils were analyzed. Important findings Results in 2012 showed that 2-year N addition promoted the growth of the four species and the effects were different among growth forms and were species-specific. In general, the plant biomass of the studied species was significantly correlated with leaf N concentration, leaf N:P ratio, community N pool, soil total N content and soil N:P ratio, while only weak relationships were observed between plant biomass and C:N and C:P ratios of plants and soils. In contrast, there was a significant linear relationship between RGR and N:P ratios both of plants and soils.Our results suggest that short-term N addition promoted the accumulation of plant biomass, and the species-specific responses to stimulated N addition can directly affect the structure of the desert steppe ecosystem. Plant N:P ratio and soil N:P ratio could indicate nutrient limitation of plant growth to a certain extent: N addition increased soil N content and N:P ratio, and thus relieved N limitation gradually. Once more N is available to plants, the growth of plants and the accumulation of community N was stimulated in turn.  相似文献   

12.
Recous  Sylvie  Machet  Jean-Marie 《Plant and Soil》1999,206(2):137-149
Previous studies on the fate of fertiliser nitrogen applied to winter wheat in temperate climates have shown that nitrogen (N) applied early, at tillering for wheat, was less efficiently taken up than N applied later in the growth cycle. We examined the extent to which the soil microbial N immobilisation varied during the wheat spring growth cycle and how microbial immobilisation and plant uptake competed for nitrogen. We set up a pulse-15N labelled field experiment in which N was applied at eight development stages from tillering (beginning of March) to anthesis (mid-June). Each application was 50 kg N ha-1 as 15N labelled urea except for the first application which was 25 kg N ha-1. The distribution of fertiliser 15N in shoots, roots, mineral and organic soil N was examined by destructive sampling 7 and 14 days after each 15N pulse. The inorganic 15N pool was almost depleted by day 14. The N uptake efficiency increased with later applications from 45% at tillering to 65% at flowering. N immobilisation was rather constant at 13–16% of N applied, whatever the date of application. The increase in plant 15N uptake resulted in an increase in the total 15N recovery in the plant-soil system (15N in soil +15N in plant), suggesting that gaseous losses were lower at the later application dates.  相似文献   

13.
M26 apple rootstocks were grown in sand culture and suppliedwith three rates of nitrogen (N) with the irrigation: none,0·8 mol N m–2 or 8·0 mol N m–2. Allthe N supplied to the trees was labelled with 15N at 5·0atom percent enrichment. The effect of N supply on tree growth,N uptake and the remobilization of N from stems for the annualgrowth of the trees was measured. Increasing the N supply increasedleaf growth, but had no effect upon root mass and so alteredthe root/leaf dry matter ratio Plants receiving no fertilizer N had to rely entirely upon storedreserves of N for their seasonal growth. Initially this N wasused for leaf growth, which stopped after a few weeks. Thereafterthe N-deficient plants retranslocated some of the N from theirleaves to support root growth. Increasing the N supply had littleeffect upon the amount of N remobilized for growth, althoughwell-fertilized plants accumulated N in their leaves and didnot retranslocate any to support root growth. The partitioningof N between roots and shoots was, therefore, altered by increasingthe N supply. Amino acid analysis of stems showed that the majorforms of N remobilized during growth were protein rich in asparagineand arginine The results show the importance of internal N cycling for thegrowth of young apple trees, and are discussed in relation toother studies of N cycling in deciduous trees Malus domestica Borkh., nitrogen, remobilization, growth, partitioning, storage  相似文献   

14.
Representatives of fifteen validly described and three non-validly described species of Nocardia were assigned to nineteen groups based on an optimised PCR-randomly amplified polymorphic DNA fingerprinting technique. Species specific banding patterns were recognised for the representatives of N. brasiliensis, N. crassostreae, N. farcinica, N. otitidiscaviarum and N. seriola. Unique banding patterns were also seen for the type strains of N. brevicatena, N. carnea, N. salmonicida, N. uniformis and N. vaccinii, and for the single representatives of "N. fusca", "N. pseudosporangifera", and "N. violaceofusca". More than one banding pattern was detected for the N. asteroides, N. flavorosea, N. nova, N. pseudobrasiliensis and N. transvalensis strains though in the case of the representative strains of N. nova and N. transvalensis the patterns were similar for each of these species. The results are in line with current trends in nocardial systematics thereby indicating that PCR-randomly amplified polymorphic DNA fingerprinting provides valuable data for the classification and identification of pathogenic nocardiae to the species level.  相似文献   

15.
The partial amino acid sequences of the small subunit of Fraction 1 protein from N. sylvestris, N. tomentosiformis and N. tabacum were determined. The sequence of N. sylvestris is NH2. Gln-Val-Trp-Pro-Pro-Ile-Asn-----Tyr COOH. In the sequence up to the 7th amino acid and C-terminus, differences were only found at the 6th position in the three species, where N. sylvestris and N. tomentosiformis show Ile and Tyr, respectively. N. tabacum show both Ile and Tyr in almost equal amount at this position. These results confirmed a previous hypothesis that N. tabacum had been evolved through the hybridization of N. sylvestris and N. tomentosiformis.  相似文献   

16.
鲁亮  吴厚永 《昆虫学报》2001,44(4):548-554
通过比较线粒体基因组16s rRNA基因片段的差异,研究了分布于我国的二齿新蚤种团(bidentatiformis group)7种新蚤的分子系统发育关系,以斯氏新蚤种团的特新蚤作为外群。结果显示,其中5个种 (Neopsylla bidentatiformis、N. mana、N. pleski、N. teraturaN. hongyangensis) 的种间序列差异小于1%,变异水平和种内变异相当,显示了它们之间较近的亲缘关系;N. abagaitui和上述5种之间有约4%的变异,说明该种有较长的分化历史。来自两个地区的二齿新蚤4个样本间有两种不同的基因型,而红羊新蚤可以归入其中的一种。加上形态特征的特点,可以认为红羊新蚤不应该属于毛新蚤种团,而属于二齿新蚤种团;至于其是否为二齿新蚤的同种异名,还有必要做进一步的研究。另外,N. siboi和形态近缘种N. teratura之间存在20%的变异,其原因有待进一步研究。  相似文献   

17.
高肥力土壤条件下不同基因型花生对氮素利用的差异   总被引:3,自引:0,他引:3  
在桶栽条件下,利用15N示踪技术,选用20个基因型花生为供试材料,研究了高肥力土壤条件下不同基因型花生对氮素利用的差异.结果表明:高肥力土壤条件下花生氮素营养以土壤氮为主,根瘤固氮次之,肥料氮最低.不同基因型间花生对全氮、肥料氮、土壤氮和根瘤固氮的吸收和积累均存在显著差异,基因型间遗传变异以根瘤固氮最大,肥料氮和土壤氮相当.氮素荚果生产效率和氮肥利用率基因型间差异显著,最高值分别为最低值的3.6和2.1倍.全氮、肥料氮、土壤氮和根瘤固氮的氮素收获指数基因型间均存在显著遗传变异,且以根瘤固氮的氮素收获指数基因型间遗传变异最大.花生荚果产量与不同氮源氮素积累量及氮素收获指数、氮素荚果生产效率和氮肥利用率呈显著或极显著正相关.依据花生对不同氮源氮素吸收积累和荚果产量筛选出全氮高积累高产型、肥料氮高积累高产型、土壤氮高积累高产型和根瘤固氮高积累高产型四大类型花生,其中四大类型特征兼有的有4个花生基因型.  相似文献   

18.
We measured the incorporation of recycled urea-nitrogen (N) by ruminal microbes, using five ruminally and duodenally fistulated steers (237 kg) fed low-quality grass hay (47 g crude protein/kg dry matter (DM)). Three received 1 kg/day of soybean meal (SBM) and two received no supplemental protein (control). The experiment was 15 days long. Background enrichments of 15N were measured on day 9 and continuous jugular infusion of 0.12 g/day [15N15N]urea began on day 10. Daily samples of urine, feces, ruminal bacteria and duodenal digesta from days 10 through 14 were used to determine plateaus in 15N enrichment. Duodenal and bacterial samples collected on day 15 were used to measure duodenal N flows. Bacterial N flow was calculated as duodenal N flow multiplied by duodenal 15N enrichment divided by bacterial 15N enrichment. Bacterial N from recycled urea-N was calculated as bacterial N flow multiplied by bacterial 15N enrichment divided by urinary urea 15N enrichment. Urinary enrichment of [15N15N]urea plateaued within 24 h, whereas 14N15N urea plateaued within 48 h of [15N15N]urea infusion. Bacteria reached a plateau in 15N enrichment within 24 h and duodenal samples within 48 h. Urea production was 17.6 g of urea-N/day for control and 78.0 g/day for SBM. Gut entry was 0.99 g of urea-N/g of urea-N produced for control and 0.87 g/g for SBM. Incorporation of recycled N into microbial N was 9.0 g of N/day for control and 23.0 g/day for SBM. Recycled urea-N accounted for 0.33 g of N/g of microbial N at the duodenum for control and 0.27 g/g for SBM. Our methods allowed measurement of incorporation of recycled urea-N into ruminal microbial N.  相似文献   

19.
J. Hassink 《Plant and Soil》1995,175(2):159-166
I tested whether the non-fertilizer N supply of grassland soils (NFNS; N uptake on unfertilized plots) affects the relationships between N uptake and dry matter production, N application and N uptake, N application and dry matter production, as well as the optimum fertilizer application rate.At low N uptake rates the amount of dry matter production per kg of N uptake was negatively correlated with NFNS; at higher N uptake levels the correlation was not significant. The apparent nitrogen recovery of fertilizer N was not correlated with NFNS. The optimum fertilizer application rate was correlated positively with the maximum dry matter production (Max DM) and negatively with NFNS. The relationship optimum fertilizer application = –81–0.8 × NFNS + 0.0375 × Max DM accounted for 89% of the variance in optimum fertilizer application rate between soils at a marginal N effect of 7.5 kg dry matter per kg N applied. So an increase in NFNS of 100 kg N resulted in a decrease of the optimum N application rate of 80 kg N.  相似文献   

20.
Plant Regeneration from Mesophyll Protoplasts of Several Nicotiana Species   总被引:3,自引:0,他引:3  
In a search for model systems in plant cell genetics studies mesophyll protoplasts from eleven species of Nicotiana with low chromosome number (N. acuminata, N. alata, N. glauca, N. glutinosa, N. langsdorffii, N. longiflora, N. otophora, N. paniculata, N. plumbaginifolia, N. suaveolens, N. sylvestris) were shown to divide in a liquid culture medium. Plants were recovered from calli originating from protoplasts of all these species except N. glutinosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号