首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Carotenoids have been identified and their quantities measured in the eyes of several frog species. The combined pigment epithelium and choroid layer of an R. pipiens or esculenta eye contain about 1γ of xanthophyll and about 4γ of vitamin A. During light adaptation the xanthophyll content falls 10 to 20 per cent. 2. Light adapted retinas contain about 0.2–0.3 γ of vitamin A alone. 3. Dark adapted retinas contain only a trace of vitamin A. The destruction of their visual purple with chloroform liberates a hitherto undescribed carotenoid, retinene. The bleaching of visual purple to visual yellow by light also liberates retinene. Free retinene is removed from the isolated retina by two thermal processes: reversion to visual purple and decomposition to colorless products, including vitamin A. This is the source of the vitamin A of the light adapted retina. 4. Isolated retinas which have been bleached and allowed to fade completely contain several times as much vitamin A as retinas from light adapted animals. The visual purple system therefore expends vitamin A and is dependent upon the diet for its replacement. 5. Visual purple behaves as a conjugated protein in which retinene is the prosthetic group. 6. Vitamin A is the precursor of visual purple as well as the product of its decomposition. The visual processes therefore constitute a cycle.  相似文献   

2.
1. The interrelations of visual purple, retinene, and vitamin A in the bull frog retina are analyzed in simple experiments, the results of which are presented in a series of automatically recorded spectra. 2. Observations are reported upon the distributions, properties, and concentrations of xanthophyll, vitamin A, and flavine in the pigmented tissues of the eye.  相似文献   

3.
Rhodopsin is formed by the condensation of opsin with a cis isomer of retinene, called neo-b. The bleaching of rhodopsin releases all-trans retinene which must be isomerized back to neo-b in order for rhodopsin to regenerate. Both retinene isomers are in equilibrium with the corresponding isomers of vitamin A, through the alcohol dehydrogenase system. An enzyme is found in cattle retinas and frog pigment layers which catalyzes the interconversion of all-trans and neo-b retinene. We call it "retinene isomerase." It is soluble in neutral phosphate buffer, and precipitates between 20 and 35 per cent saturation with ammonium sulfate. In the dark, the isomerase converts all-trans and neo-b retinene to an equilibrium mixture of 5 parts neo-b and 95 parts all-trans. With opsin present to trap neo-b, the isomerase catalyzes the synthesis of rhodopsin from all-trans retinene. This reaction, however, is too slow to account for dark adaptation. Retinene is isomerized by light, but too slowly to supply the retina with neo-b. In aqueous solution the pseudoequilibrium mixture contains about 15 per cent neo-b. When all-trans retinene is irradiated in the presence of isomerase, the rate of formation of neo-b is increased about 5 times, and the pseudoequilibrium shifted so that the mixture now contains about 32 per cent neo-b. The isomerase is specific for all-trans and neo-b retinene. It does not act on two other cis isomers of retinene, nor on all-trans or neo-b vitamin A. The role of the isomerase in vision appears to be as follows: in the light, as rhodopsin is bleached to opsin and all-trans retinene, the latter is in part converted to the neo-b isomer and stored in the pigment epithelium as neo-b vitamin A. During dark adaptation, the dominant process is the trapping by opsin of neo-b retinene supplied from stores of neo-b vitamin A, and the slow isomerase-catalyzed "dark" conversion of all-trans to neo-b retinene.  相似文献   

4.
1. Visual purple from the sea robin, sea bass, and scup is almost identical spectroscopically with that from frogs. The interrelations of this pigment with vitamin A and retinene are also the same as in the frog. 2. In strong acids or at pH > 11, the visual yellow of sea robin retinas is converted irreversibly into a pH indicator, yellow in acid and almost colorless in alkaline solution. Unlike neutral visual yellow, the indicator is not removed to form either vitamin A or visual purple. In the ammoniacal retina the reversion of visual yellow itself to purple is accelerated. 3. The combined pigment epithelium and choroid layer in these fishes contain vitamin A, flavine, and an unidentified xanthophyll.  相似文献   

5.
The course of dark adaptation of the human eye varies with the intensity used for the light adaptation which precedes it. Preadaptation to intensities below 200 photons is followed only by rod adaptation, while preadaptation to intensities above 4000 photons is followed first by cone adaptation and then by rod adaptation. With increasing intensities of preadaptation, cone dark adaptation remains essentially the same in form, but covers an increasing range of threshold intensities. At the highest preadaptation the range of the subsequent cone dark adaptation covers more than 3 log units. Rod dark adaptation appears in two types—a rapid and a delayed. The rapid rod dark adaptation is evident after preadaptations to low intensities corresponding to those usually associated with rod function. The delayed rod dark adaptation shows up only after preadaptation to intensities which are hundreds of times higher than those which produce the maximal function of the rods in flicker, intensity discrimination, and visual acuity. The delayed form remains essentially constant in shape following different intensities of preadaptation. However, its time of appearance increases with the preadaptation intensity; after the highest preadaptation, it appears only after 12 or 13 minutes in the dark. These two modes of rod dark adaptation are probably the expression of two methods of formation of visual purple in the rods after its bleaching by the preadaptation lights.  相似文献   

6.
Neural and Photochemical Mechanisms of Visual Adaptation in the Rat   总被引:20,自引:13,他引:7       下载免费PDF全文
The effects of light adaptation on the increment threshold, rhodopsin content, and dark adaptation have been studied in the rat eye over a wide range of intensities. The electroretinogram threshold was used as a measure of eye sensitivity. With adapting intensities greater than 1.5 log units above the absolute ERG threshold, the increment threshold rises linearly with increasing adapting intensity. With 5 minutes of light adaptation, the rhodopsin content of the eye is not measurably reduced until the adapting intensity is greater than 5 log units above the ERG threshold. Dark adaptation is rapid (i.e., completed in 5 to 10 minutes) until the eye is adapted to lights strong enough to bleach a measurable fraction of the rhodopsin. After brighter light adaptations, dark adaptation consists of two parts, an initial rapid phase followed by a slow component. The extent of slow adaptation depends on the fraction of rhodopsin bleached. If all the rhodopsin in the eye is bleached, the slow fall of threshold extends over 5 log units and takes 2 to 3 hours to complete. The fall of ERG threshold during the slow phase of adaptation occurs in parallel with the regeneration of rhodopsin. The slow component of dark adaptation is related to the bleaching and resynthesis of rhodopsin; the fast component of adaptation is considered to be neural adaptation.  相似文献   

7.
1. Measurements of visual purple regeneration in solution have been made by a procedure which minimized distortion of the results by other color changes so that density changes caused by the regenerating substance alone are obtained. 2. Bleaching a visual purple solution with blue and violet light causes a greater subsequent regeneration than does an equivalent bleaching with light which lacks blue and violet. This is due to a photosensitive substance which has a gradually increasing effective absorption toward the shorter wavelengths. It is uncertain whether this substance is a product of visual purple bleaching or is present in the solution before illumination. 3. The regeneration of visual purple measured at 560 mµ is maximal at about pH 6.7 and decreases markedly at more acid and more alkaline pH''s. 4. The absorption spectrum of the regenerating material shows only a concentration change during the course of regeneration, but has a higher absorption at the shorter wavelengths than has visual purple before illumination. 5. Visual purple extractions made at various temperatures show no significant difference in per cent of regeneration. 6. The kinetics of regeneration is usually that of a first order process. Successive regenerations in the same solution have the same velocity constant but form smaller total amounts of regenerated substance. 7. In vivo, the frog retina shows no additional oxygen consumption while visual purple is regenerating.  相似文献   

8.
Cis-trans isomers of vitamin A and retinene in the rhodopsin system   总被引:28,自引:14,他引:14  
Vitamin A and retinene, the carotenoid precursors of rhodopsin, occur in a variety of molecular shapes, cis-trans isomers of one another. For the synthesis of rhodopsin a specific cis isomer of vitamin A is needed. Ordinary crystalline vitamin A, as also the commercial synthetic product, both primarily all-trans, are ineffective. The main site of isomer specificity is the coupling of retinene with opsin. It is this reaction that requires a specific cis isomer of retinene. The oxidation of vitamin A to retinene by the alcohol dehydrogenase-cozymase system displays only a low degree of isomer specificity. Five isomers of retinene have been isolated in crystalline condition: all-trans; three apparently mono-cis forms, neoretinenes a and b and isoretinene a; and one apparently di-cis isomer, isoretinene b. Neoretinenes a and b were first isolated in our laboratory, and isoretinenes a and b in the Organic Research Laboratory of Distillation Products Industries. Each of these substances is converted to an equilibrium mixture of stereoisomers on simple exposure to light. For this reaction, light is required which retinene can absorb; i.e., blue, violet, or ultraviolet light. Yellow, orange, or red light has little effect. The single geometrical isomers of retinene must therefore be protected from low wave length radiation if their isomerization is to be avoided. By incubation with opsin in the dark, the capacity of each of the retinene isomers to synthesize rhodopsin was examined. All-trans retinene and neoretinene a are inactive. Neoretinene b yields rhodopsin indistinguishable from that extracted from the dark-adapted retina (λmax· 500 mµ). Isoretinene a yields a similar light-sensitive pigment, isorhodopsin, the absorption spectrum of which is displaced toward shorter wave lengths (λmax· 487 mµ). Isoretinene b appears to be inactive, but isomerizes preferentially to isoretinene a, which in the presence of opsin is removed to form isorhodopsin before the isomerization can go further. The synthesis of rhodopsin in solution follows the course of a bimolecular reaction, as though one molecule of neoretinene b combines with one of opsin. The synthesis of isorhodopsin displays similar kinetics. The bleaching of rhodopsin, whether by chemical means or by exposure to yellow or orange (i.e., non-isomerizing) light, yields primarily or exclusively all-trans retinene. The same appears to be true of isorhodopsin. The process of bleaching is therefore intrinsically irreversible. The all-trans retinene which results must be isomerized to active configurations before rhodopsin or isorhodopsin can be regenerated. A cycle of isomerization is therefore an integral part of the rhodopsin system. The all-trans retinene which emerges from the bleaching of rhodopsin must be isomerized to neoretinene b before it can go back; or if first reduced to all-trans vitamin A, this must be isomerized to neovitamin Ab before it can regenerate rhodopsin. The retina obtains new supplies of the neo-b isomer: (a) by the isomerization of all-trans retinene in the eye by blue or violet light; (b) by exchanging all-trans vitamin A for new neovitamin Ab from the blood circulation; and (c) the eye tissues may contain enzymes which catalyze the isomerization of retinene and vitamin A in situ. When the all-trans retinene which results from bleaching rhodopsin in orange or yellow light is exposed to blue or violet light, its isomerization is accompanied by a fall in extinction and a shift of absorption spectrum about 5 mµ toward shorter wave lengths. This is a second photochemical step in the bleaching of rhodopsin. It converts the inactive, all-trans isomer of retinene into a mixture of isomers, from which mixtures of rhodopsin and isorhodopsin can be regenerated. Isorhodopsin, however, is an artefact. There is no evidence that it occurs in the retina; nor has isovitamin Aa or b yet been identified in vivo. In rhodopsin and isorhodopsin, the prosthetic groups appear to retain the cis configurations characteristic of their retinene precursors. In accord with this view, the β-bands in the absorption spectra of both pigments appear to be cis peaks. The conversion to the all-trans configuration occurs during the process of bleaching. The possibility is discussed that rhodopsin may represent a halochromic complex of a retinyl ion with opsin. The increased resonance associated with the ionic state of retinene might then be responsible both for the color of rhodopsin and for the tendency of retinene to assume the all-trans configuration on its release from the complex. A distinction must be made between the immediate precursor of rhodopsin, neovitamin Ab, and the vitamin A which must be fed in order that rhodopsin be synthesized in vivo. Since vitamin A isomerizes in the body, it is probable that any geometrical isomer can fulfill all the nutritional needs for this vitamin.  相似文献   

9.
夜蛾复眼转化速度与光暗适应的时间关系   总被引:10,自引:1,他引:9  
高慰曾 《昆虫学报》1989,32(3):306-310
夜行蛾类的复眼,随光、暗适应时间而逐步转化,这种转化是可逆的.以屏蔽色素分布范围的大小为指标来判断复眼的转化速度得以下结果:1.从亮眼到暗眼:亮眼进入暗适应后其屏蔽色素随暗适应时间的增加而逐步向远心端方向集中.屏蔽色素的移动是减速进行的.暗适应开始后的前3分钟,每分钟移动百分率为10.7,当暗到10—15分钟时每分钟移动百分率为4.6,再暗到60—150分钟时每分钟移动百分率为0.7.屏蔽色素移动的速度个体间差异较大,完成全过程大多数个体需150分钟,少数个体只需60分钟,另有个别个体经过270分钟暗适应仍尚未完成全过程.2.从暗眼到亮眼:暗眼受光后,其屏蔽色素随光适应时间的增加而向近心端方向扩散,色素移动速度随时间的增加而减缓.转化全过程约需60分钟.  相似文献   

10.
During the dark adaptation of the human eye, its visual threshold decreases to a small fraction of its original value in the light. An analysis of the quantitative data describing this adaptation shows that it follows the course of a bimolecular chemical reaction. On the basis of these findings it is suggested that visual reception in dim light is conditioned by a reversible photochemical reaction involving a photosensitive substance and its two products of decomposition. Accordingly, dark adaptation depends on the course of the "dark" reaction during which the two products of decomposition reunite to synthesize the original photosensitive substance.  相似文献   

11.
Bees which are held in a fixed position so that only head movements can be made, respond to a moving stripe system in their visual field by a characteristic motion of the antennae. This reflex can be used to measure the bee''s state of photic adaptation. A curve describing the course of dark adaptation is obtained, which shows that the sensitivity of the light adapted bee''s eye increases rapidly during the first few minutes in darkness, then more slowly until it reaches a maximum level after 25 to 30 minutes. The total increase in sensitivity is about 1000 fold. The adaptive range of the human eye is about 10 times greater than for the bee''s eye. The range covered by the bee''s eye corresponds closely to the adapting range which is covered by the rods of the human eye.  相似文献   

12.
Hubbard has found that the photoisomerization of retinene was important for the regeneration of rhodopsin in vitro, and the object of the present investigation was to find whether this was also true for regeneration in the living human eye. In the Appendix is described a device which permits the rhodopsin density to be measured by analysing the light reflected from the fundus oculi in an ophthalmoscopic arrangement, the measurement taking about 5 seconds. Now if a blue and a yellow light viewed scotopically are adjusted in intensity so as to appear identical, they must bleach rhodopsin equally, but the blue will be more than 10 times as effective in isomerizing retinene. Therefore if retinene isomerization is important for rhodopsin regeneration, blue light should cause a more rapid regeneration after bleaching, and during bleaching the equilibrium level attained should be less profound. But, as the figures show, the course of bleaching and regeneration is identical for the matched yellow or blue bleaching lights, therefore isomerization of retinene is not important for rhodopsin regeneration in the living human eye.  相似文献   

13.
The eye tissues and liver of the alligator contain vitamin A1 alone. The retina contains rhodopsin, typical in absorption spectrum (λmax 500 mµ); but synthesized in solution from neo-b retinene and opsin much more rapidly than are the frog, mammalian, or chicken rhodopsins previously examined. In this regard alligator rhodopsin resembles the rhodopsins and porphyropsins of fishes, all of which so far investigated are synthesized rapidly in solution. The rates of synthesis in vitro of frog and alligator rhodopsins are matched closely by the rates of rod dark adaptation in living frogs and alligators, measured electrophysiologically at the same temperature. Alligator rods dark-adapt, and alligator rhodopsin is synthesized in solution, at rates characteristically associated with cones and cone pigments in frogs, mammals, and birds.  相似文献   

14.
The red pigment in the eyes of the squid, blue crab, and horseshoe crab becomes photosensitive when treated with formalin, and bleaches in the light. The resulting change in density is approximately symmetrical around a maximum at 480 mµ in the blue green. This difference absorption spectrum is in rough agreement with the spectral sensitivity of the cephalopod eye and differs only slightly from the difference absorption spectrum of vertebrate visual purple. The formalin-sensitized pigment is not melanoid. Its bleaching in squid retinas releases large quantities of retinene. It is suggested that the light sensitivity of the normal squid photopigment may be independent of its light stability.  相似文献   

15.
1. The reality of a chemical cycle proposed to describe the rhodopsin system is tested with dark adaptation measurements. 2. The first few minutes of rod dark adaptation are rapid following short, slower following long irradiation. As dark adaptation proceeds, the slow process grows more prominent, and occupies completely the final stages of adaptation. 3. Light adaptation displays similar duality. As the exposure to light of constant intensity lengthens, the visual threshold rises, and independently the speed of dark adaptation decreases. 4. These results conform with predictions from the chemical equations.  相似文献   

16.
Vitamin A in the Vision of Insects   总被引:2,自引:1,他引:1       下载免费PDF全文
Acetone-methanol extracts of honeybees (Apis mellifera) were chromatographed from petroleum ether on columns of aluminum oxide and magnesium oxide:celite. Vitamin A1 was identified by the Carr-Price (antimony chloride) reaction. These experiments provide the first demonstration of vitamin A in the tissues of an insect. Like retinene, vitamin A is confined to the heads and is not found in either thoraces or abdomens. Dark-adapted bees have very little vitamin A. During light adaptation the vitamin A increases, but at the expense of retinene, which decreases. As much as 0.1 µg of vitamin A/gm of heads has been recovered from light-adapted bees. Two methods are described for demonstrating the enzymic reduction of retinene to vitamin A, using an extract of the heads of honeybees.  相似文献   

17.
Vitamin A is reversibly dehydrogenated to vitamin A aldehyde (retinene) in isolated retinal rods and in liver extracts containing alcohol dehydrogenase and coenzyme 1.The reaction is probably involved in the utilization of vitamin A for the regeneration of bleached visual purple.The equilibrium constant kH of the dehydrogenation is 3.3 × 10?9, about 300 times more favorable to the aldehyde than kH for ethyl alcohol.  相似文献   

18.
The reduction of retinene1 to vitamina A1 in vitro   总被引:4,自引:3,他引:1  
In the surviving vertebrate retina the retinene(1) liberated by bleaching rhodopsin is converted quantitatively to vitamin A(1). Recent chemical studies have indicated that in this process the aldehyde group of retinene(1) is reduced to the primary alcohol group of vitamin A(1) (Morton; Wald). Some time ago we brought this reaction into a cell-free brei prepared from cattle retinas. The retinas were frozen, desiccated, ground, and exhaustively extracted with petroleum ether; the resulting powder, stirred in neutral buffer solution and exposed to light, converted its retinene(1) completely to vitamin A(1). Some time ago also we observed that fresh rhodopsin solutions exhibit a special type of fading in darkness following exposure to light, which is absent from the same solutions after aging. We have confirmed Bliss's identification of this reaction as the conversion of retinene(1) to vitamin A(1). The system which reduces retinene(1) is fractionated anatomically in the retinal rods. The outer segments of the rods, broken off from the underlying retinal tissue, are unable to convert their retinene(1) to vitamin A(1). In the presence of a water extract of crushed retina they do perform this conversion. On the other hand the retinal tissue from which a water extract was taken has lost this capacity. Such washed retinal tissue is reactivated by returning the washings to the solid material. The activating effect of retinal washings on isolated outer limbs or washed retina is duplicated by a boiled muscle juice. This in turn can be replaced by reduced cozymase (reduced coenzyme I; DPN-H(2)); or by a mixture of DPN and fructosediphosphate. The conversion of retinene(1) to vitamin A(1) is therefore a reduction in which two atoms of hydrogen are transferred to retinene(1) from reduced cozymase. It is assumed that this reaction is catalyzed by an apoenzyme, retinene(1) reductase, present in the rod outer limb. This process is coupled with a second system in the outer segment which reduces DPN, using hexosediphosphate or one of its derivatives as hydrogen donor. This action of DPN brings a member of the vitamin B complex, nicotinic acid amide, into an auxiliary position in the rhodopsin system. In the isolated retina or in vitro systems the reduction of retinene(1) proceeds irreversibly. Yet this reduction must be balanced by an oxidative process elsewhere in the rhodopsin cycle, since through rhodopsin as intermediate vitamin A(1) regenerates retinene(1).  相似文献   

19.
目的:探讨大鼠补充一定剂量牛磺酸及微量营养素后,能否通过影响视感受器或视中枢NO合成酶(NOS)表达及第二信使(cGMP)合成,影响视觉信号传导。方法:Wistar大鼠随机分为三组,即对照组(正常饲料组)、实验1组(5倍需要量组)和实验2组(10倍需要量组),喂养3周后,每组动物再随机分为光照组和暗适应组(平均照度为3.03LX),以正常饲料喂养72h,大鼠活杀取样,以放射免疫方法分析cGMP含量  相似文献   

20.
Iodopsin   总被引:5,自引:0,他引:5       下载免费PDF全文
The iodopsin system found in the cones of the chicken retina is identical with the rhodopsin system in its carotenoids. It differs only in the protein-the opsin -with which carotenoid combines. The cone protein may be called photopsin to distinguish it from the scotopsins of the rods. Iodopsin bleaches in the light to a mixture of photopsin and all-trans retinene. The latter is reduced by alcohol dehydrogenase and cozymase to all-trans vitamin A(1). Iodopsin is resynthesized from photopsin and a cis isomer of vitamin A, neovitamin Ab or the corresponding neoretinene b, the same isomer that forms rhodopsin. The synthesis of iodopsin from photopsin and neoretinene b is a spontaneous reaction. A second cis retinene, isoretinene a, forms iso-iodopsin (lambda(max) 510 mmicro). The bleaching of iodopsin in moderate light is a first-order reaction (Bliss). The synthesis of iodopsin from neoretinene b and opsin is second-order, like that of rhodopsin, but is very much more rapid. At 10 degrees C. the velocity constant for iodopsin synthesis is 527 times that for rhodopsin synthesis. Whereas rhodopsin is reasonably stable in solution from pH 4-9, iodopsin is stable only at pH 5-7, and decays rapidly at more acid or alkaline reactions. The sulfhydryl poison, p-chloromercuribenzoate, blocks the synthesis of iodopsin, as of rhodopsin. It also bleaches iodopsin in concentrations which do not attack rhodopsin. Hydroxylamine also bleaches iodopsin, yet does not poison its synthesis. Hydroxylamine acts by competing with the opsins for retinene. It competes successfully with chicken, cattle, or frog scotopsin, and hence blocks rhodopsin synthesis; but it is less efficient than photopsin in trapping retinene, and hence does not block iodopsin synthesis. Though iodopsin has not yet been prepared in pure form, its absorption spectrum has been computed by two independent procedures. This exhibits an alpha-band with lambda(max) 562 mmicro, a minimum at about 435 mmicro, and a small beta-band in the near ultraviolet at about 370 mmicro. The low concentration of iodopsin in the cones explains to a first approximation their high threshold, and hence their status as organs of daylight vision. The relatively rapid synthesis of iodopsin compared with rhodopsin parallels the relatively rapid dark adaptation of cones compared with rods. A theoretical relation is derived which links the logarithm of the visual sensitivity with the concentration of visual pigment in the rods and cones. Plotted in these terms, the course of rod and cone dark adaptation resembles closely the synthesis of rhodopsin and iodopsin in solution. The spectral sensitivities of rod and cone vision, and hence the Purkinje phenomenon, have their source in the absorption spectra of rhodopsin and iodopsin. In the chicken, for which only rough spectral sensitivity measurements are available, this relation can be demonstrated only approximately. In the pigeon the scotopic sensitivity matches the spectrum of rhodopsin; but the photopic sensitivity is displaced toward the red, largely or wholly through the filtering action of the colored oil globules in the pigeon cones. In cats, guinea pigs, snakes, and frogs, in which no such colored ocular structures intervene, the scotopic and photopic sensitivities match quantitatively the absorption spectra of rhodopsin and iodopsin. In man the scotopic sensitivity matches the absorption spectrum of rhodopsin; but the photopic sensitivity, when not distorted by the yellow pigmentations of the lens and macula lutea, lies at shorter wave lengths than iodopsin. This discrepancy is expected, for the human photopic sensitivity represents a composite of at least three classes of cone concerned with color vision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号