首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysis from without (LFW) occurs in two steps: (1) sensitization of cells by phage, which renders the cells susceptible to (2) destruction of an essential cell structure by an extracellular lytic enzyme. Virolysin, from phage-infected cells, was used in these studies. Normal cell autolysin is also effective. Evidence is presented that: 1. Neither phage nor lysin alone causes LFW. 2. Sensitization requires phage adsorption. 3. It can be caused by non-infectious particles. This establishes a new biological activity of the particle. 4. Heat, U.V., detergents, penicillin, and other damaging agents also sensitize cells. 5. Sensitization involves a non-lethal, reversible reaction. 6. Sensitization by phage prevents virus synthesis. Following adsorption, a cell can undergo sensitization or infection but not simultaneously. When only a few particles are adsorbed, infection can occur; when sufficient particles are adsorbed, sensitization takes place. 7. Quantitative aspects of LFW are described. Lysis proceeds logarithmically. The lysis end-point depends upon the phage concentration but is independent of the enzyme concentration.  相似文献   

2.
SUMMARY: Mass lysis of lactic streptococci infected with baeteriophage at 30° was prevented at pH 5·10. At lower pH values no multiplication of phage followed infection, and prolonged incubation at 30° resulted in loss of phage particles from unlysed samples. Adsorption of phage particles on host cells was unaffected by acidity, but no phage penetration of host cells took place. Host cell properties were apparently unchanged by adsorption of phage particles in acid whey.  相似文献   

3.
T4 bacteriophage (phage)-infected cells show a marked increase in latent-period length, called lysis inhibition, upon adsorption of additional T4 phages (secondary adsorption). Lysis inhibition is a complex phenotype requiring the activity of at least six T4 genes. Two basic mysteries surround our understanding of the expression of lysis inhibition: (i) the mechanism of initiation (i.e., how secondary adsorption leads to the expression of lysis inhibition) and (ii) the mechanism of lysis (i.e., how this signal not to lyse is reversed). This study first covers the basic biology of the expression of lysis inhibition and lysis of T4-infected cells at high culture densities. Then evidence is presented which implies that, as with the initiation of lysis inhibition, sudden, lysis-associated clearing of these cultures is likely caused by T4 secondary adsorption. For example, such clearing is often observed for lysis-inhibited T4-infected cells grown in batch culture during T4 stock preparation. The significance of this secondary adsorption-induced lysis to wild T4 populations is discussed. The study concludes with a logical argument suggesting that the lytic nature of the T4 phage particle evolved as a novel mechanism of phage-induced lysis.  相似文献   

4.
1. An anti-Escherichia coli phage has been isolated and its behavior studied. 2. A plaque counting method for this phage is described, and shown to give a number of plaques which is proportional to the phage concentration. The number of plaques is shown to be independent of agar concentration, temperature of plate incubation, and concentration of the suspension of plating bacteria. 3. The efficiency of plating, i.e. the probability of plaque formation by a phage particle, depends somewhat on the culture of bacteria used for plating, and averages around 0.4. 4. Methods are described to avoid the inactivation of phage by substances in the fresh lysates. 5. The growth of phage can be divided into three periods: adsorption of the phage on the bacterium, growth upon or within the bacterium (latent period), and the release of the phage (burst). 6. The rate of adsorption of phage was found to be proportional to the concentration of phage and to the concentration of bacteria. The rate constant ka is 1.2 x 10–9 cm.8/min. at 15°C. and 1.9 x 10–9 cm.8/min. at 25°. 7. The average latent period varies with the temperature in the same way as the division period of the bacteria. 8. The latent period before a burst of individual infected bacteria varies under constant conditions between a minimal value and about twice this value. 9. The average latent period and the average burst size are neither increased nor decreased by a fourfold infection of the bacteria with phage. 10. The average burst size is independent of the temperature, and is about 60 phage particles per bacterium. 11. The individual bursts vary in size from a few particles to about 200. The same variability is found when the early bursts are measured separately, and when all the bursts are measured at a late time.  相似文献   

5.
Quantification of bias related to the extraction of DNA directly from soils   总被引:21,自引:0,他引:21  
In recent years, several protocols based on the extraction of nucleic acids directly from the soil matrix after lysis treatment have been developed for the detection of microorganisms in soil. Extraction efficiency has often been evaluated based on the recovery of a specific gene sequence from an organism inoculated into the soil. The aim of the present investigation was to improve the extraction, purification, and quantification of DNA derived from as large a portion of the soil microbial community as possible, with special emphasis placed on obtaining DNA from gram-positive bacteria, which form structures that are difficult to disrupt. Furthermore, we wanted to identify and minimize the biases related to each step in the procedure. Six soils, covering a range of pHs, clay contents, and organic matter contents, were studied. Lysis was carried out by soil grinding, sonication, thermal shocks, and chemical treatments. DNA was extracted from the indigenous microflora as well as from inoculated bacterial cells, spores, and hyphae, and the quality and quantity of the DNA were determined by gel electrophoresis and dot blot hybridization. Lysis efficiency was also estimated by microscopy and viable cell counts. Grinding increased the extracellular DNA yield compared with the yield obtained without any lysis treatment, but none of the subsequent treatments clearly increased the DNA yield. Phage lambda DNA was inoculated into the soils to mimic the fate of extracellular DNA. No more than 6% of this DNA could be recovered from the different soils. The clay content strongly influenced the recovery of DNA. The adsorption of DNA to clay particles decreased when the soil was pretreated with RNA in order to saturate the adsorption sites. We also investigated different purification techniques and optimized the PCR methods in order to develop a protocol based on hybridization of the PCR products and quantification by phosphorimaging.  相似文献   

6.
1. Under a variety of conditions in which cells are infected with one or a few virus particles and the host cells are killed, but no infective particles or virus material is formed as indicated by plaque count, one-step growth curve, or protein or desoxyribonucleic determinations, the cells neither lyse nor release ribonucleic acid into the medium. 2. The "killing" effect of S. muscae phage is separate from its lytic property. 3. The release of ribonucleic acid into the medium is not simply due to the killing of the cell by the virus, and ribonucleic acid is never found in the medium unless virus material is synthesized. 4. Infected cells of S. muscae synthesizing virus release ribonucleic acid into the medium before cellular lysis begins and before any virus is liberated. 5. The higher the phage yield the more ribonucleic acid is released into the medium before any virus is released. 6. Phage may be released from one strain of Staphylococcus muscae without cellular lysis, although bacterial lysis begins shortly after the virus is released. In another strain, infected under similar conditions, virus liberation occurs simultaneously with cellular lysis. 7. The viruses liberated from both bacterial strains appear to be the same in so far as they cannot be distinguished by serological tests, have the same plaque type and plaque size, and need the same amino acids added to the medium in order to grow. Furthermore, the virus liberated from one strain can infect and multiply in the other strain and vice versa. 8. It is suggested that virus synthesis, in S. muscae cells infected with one or a few phage particles, leads to a disturbance of the normal cellular metabolism, resulting in lysis of the host cell.  相似文献   

7.
Mutations in coliphage p1 affecting host cell lysis   总被引:6,自引:1,他引:5       下载免费PDF全文
A total of 103 amber mutants of coliphage P1 were tested for lysis of nonpermissive cells. Of these, 83 caused cell lysis at the normal lysis time and have defects in particle morphogenesis. Five amber mutants, with mutations in the same gene (gene 2), caused premature lysis and may have a defect in a lysis regulator. Fifteen amber mutants were unable to cause cell lysis. Artificially lysed cells infected with five of these mutants produced viable phage particles, and phage particles were seen in thin sections of unlysed, infected cells. However, phage production by these mutants was not continued after the normal lysis time. We conclude that the defect of these five mutants is in a lysis function. The five mutations were found to be in the same gene (designated gene 17). The remaining 10 amber mutants, whose mutations were found to be in the same gene (gene 10), were also unable to cause cell lysis. They differed from those in gene 17 in that no viable phage particles were produced from artificially lysed cells, and no phage particles were seen in thin sections of unlysed, infected cells. We conclude that the gene 10 mutants cannot synthesize late proteins, and it is possible that gene 10 may code for a regulator of late gene expression for P1.  相似文献   

8.
In recent years, several protocols based on the extraction of nucleic acids directly from the soil matrix after lysis treatment have been developed for the detection of microorganisms in soil. Extraction efficiency has often been evaluated based on the recovery of a specific gene sequence from an organism inoculated into the soil. The aim of the present investigation was to improve the extraction, purification, and quantification of DNA derived from as large a portion of the soil microbial community as possible, with special emphasis placed on obtaining DNA from gram-positive bacteria, which form structures that are difficult to disrupt. Furthermore, we wanted to identify and minimize the biases related to each step in the procedure. Six soils, covering a range of pHs, clay contents, and organic matter contents, were studied. Lysis was carried out by soil grinding, sonication, thermal shocks, and chemical treatments. DNA was extracted from the indigenous microflora as well as from inoculated bacterial cells, spores, and hyphae, and the quality and quantity of the DNA were determined by gel electrophoresis and dot blot hybridization. Lysis efficiency was also estimated by microscopy and viable cell counts. Grinding increased the extracellular DNA yield compared with the yield obtained without any lysis treatment, but none of the subsequent treatments clearly increased the DNA yield. Phage λ DNA was inoculated into the soils to mimic the fate of extracellular DNA. No more than 6% of this DNA could be recovered from the different soils. The clay content strongly influenced the recovery of DNA. The adsorption of DNA to clay particles decreased when the soil was pretreated with RNA in order to saturate the adsorption sites. We also investigated different purification techniques and optimized the PCR methods in order to develop a protocol based on hybridization of the PCR products and quantification by phosphorimaging.  相似文献   

9.
A mouse myeloma cell line growing in suspension was subjected intermittently to flow through a sudden contraction and turbulent flow in a capillary tube. The probability of lysis per pass through the capillary tube increased with average wall shear stress level and with residence time per pass in the tube. Lysis was first observed at a threshold average wall shear stress level of 1800 dyn/cm2. Although the flow caused lysis, it had no effect on cell viability.  相似文献   

10.
Selection for lysis inhibition in bacteriophage   总被引:5,自引:0,他引:5  
For Escherichia coli cells that have been infected by T-even bacteriophages (phages T2, T4, and T6), the adsorption of a second T-even phage results in an increase in the length of the original phage infection and an associated increase in the number of phages produced by the same infected cell. This is a phage encoded response called lysis inhibition. In this study the ecological significance of lysis inhibition is explored. In particular it is argued that lysis inhibition is an adaptive response to environments containing high concentrations of infected cells and low concentrations of uninfected cells.  相似文献   

11.
Wild-type phage J1 of Lactobacillus casei was found to be temperature-sensitive; the phage failed to grow at 40°C, though the host bacteria grew normally at that temperature.

An analysis of phage growth at 40°C revealed the following. (i) Free phage particle was thermostable, (ii) The adsorption of phage led to the penetration of phage DNA. (iii) No lysis of infected cells occurred, but this was not a major block, (iv) No mature phage particle was formed in the infected cells, (v) No phage-related protein was formed in the cells, (vi) The temperature-shift experiment and the radiobiological study indicated that an early stage of intracellular phage growth was blocked.  相似文献   

12.
A method is described for liberating and estimating intracellular bacteriophage at any stage during the latent period by arresting phage growth and inducing premature lysis of the infected cells. This is brought about by placing the infected bacteria into the growth medium supplemented with 0.01 M cyanide and with a high titer T6 lysate. It was found in some of the later experiments that the T6 lysate is essential only during the first half of the latent period. Cyanide alone will induce lysis during the latter part of the latent period. Using this method on T4-infected bacteria it is found that during the first half of the latent period no phage particles, not even those originally infecting the bacteria, are recovered. This result is in agreement with the gradually emerging concept that a profound alteration of the infecting phage particle takes place before reproduction ensues. During the second half of the latent period mature phage is found to accumulate within the bacteria at a rate which is parallel to the approximately linear increase of intracellular DNA in this system. However, the phage production lags several minutes behind DNA production. When 5-methyltryptophan replaced cyanide as the metabolic inhibitor, similar results were obtained. The curves were, however, displaced several minutes to the left on the time axis. The results are compared with Latarjet's (16) data on x-radiation of infected bacteria and with Foster's data (18) concerning the effect of proflavine on infected bacteria. Essential agreement with both is apparent.  相似文献   

13.
Roles of bacteriophage T4 gene 5 and gene s products in cell lysis.   总被引:3,自引:2,他引:1       下载免费PDF全文
Previous studies indicated that (i) T4 gene s product (gps) protects infected cells from superinfection lysis from without, (ii) the absence of gps in infected cells also leads to lysis from within even when T4 e lysozyme is absent, (iii) T4 gene 5 product (gp5), a polypeptide of the virion baseplate, may be responsible for inducing lysis from without, and (iv) altered gp5 of the T4 mutant 5ts1 can replace e lysozyme to cause lysis from within. Results of this study showed that (i) wild-type gp5 in infected cells lacking e lysozyme was responsible for lysis from within in the absence of gps, and (ii) gps did not protect infected cells from superinfection lysis from without by 5ts1 phage. We prpose that gps normally prevents functional expression of wild-type gp5 activity from either side of the cell wall, whereas the 5ts1 form of gp5 is insensitive to the gps barrier and induces lysis from either side of the cell wall.  相似文献   

14.
1. Osmotic shock disrupts particles of phage T2 into material containing nearly all the phage sulfur in a form precipitable by antiphage serum, and capable of specific adsorption to bacteria. It releases into solution nearly all the phage DNA in a form not precipitable by antiserum and not adsorbable to bacteria. The sulfur-containing protein of the phage particle evidently makes up a membrane that protects the phage DNA from DNase, comprises the sole or principal antigenic material, and is responsible for attachment of the virus to bacteria. 2. Adsorption of T2 to heat-killed bacteria, and heating or alternate freezing and thawing of infected cells, sensitize the DNA of the adsorbed phage to DNase. These treatments have little or no sensitizing effect on unadsorbed phage. Neither heating nor freezing and thawing releases the phage DNA from infected cells, although other cell constituents can be extracted by these methods. These facts suggest that the phage DNA forms part of an organized intracellular structure throughout the period of phage growth. 3. Adsorption of phage T2 to bacterial debris causes part of the phage DNA to appear in solution, leaving the phage sulfur attached to the debris. Another part of the phage DNA, corresponding roughly to the remaining half of the DNA of the inactivated phage, remains attached to the debris but can be separated from it by DNase. Phage T4 behaves similarly, although the two phages can be shown to attach to different combining sites. The inactivation of phage by bacterial debris is evidently accompanied by the rupture of the viral membrane. 4. Suspensions of infected cells agitated in a Waring blendor release 75 per cent of the phage sulfur and only 15 per cent of the phage phosphorus to the solution as a result of the applied shearing force. The cells remain capable of yielding phage progeny. 5. The facts stated show that most of the phage sulfur remains at the cell surface and most of the phage DNA enters the cell on infection. Whether sulfur-free material other than DNA enters the cell has not been determined. The properties of the sulfur-containing residue identify it as essentially unchanged membranes of the phage particles. All types of evidence show that the passage of phage DNA into the cell occurs in non-nutrient medium under conditions in which other known steps in viral growth do not occur. 6. The phage progeny yielded by bacteria infected with phage labeled with radioactive sulfur contain less than 1 per cent of the parental radioactivity. The progeny of phage particles labeled with radioactive phosphorus contain 30 per cent or more of the parental phosphorus. 7. Phage inactivated by dilute formaldehyde is capable of adsorbing to bacteria, but does not release its DNA to the cell. This shows that the interaction between phage and bacterium resulting in release of the phage DNA from its protective membrane depends on labile components of the phage particle. By contrast, the components of the bacterium essential to this interaction are remarkably stable. The nature of the interaction is otherwise unknown. 8. The sulfur-containing protein of resting phage particles is confined to a protective coat that is responsible for the adsorption to bacteria, and functions as an instrument for the injection of the phage DNA into the cell. This protein probably has no function in the growth of intracellular phage. The DNA has some function. Further chemical inferences should not be drawn from the experiments presented.  相似文献   

15.
Dilute solutions of MnCl2 or MnSO4 accelerate the lytic effect of phage upon susceptible staphylococci. Under the conditions of our experiments the manganese-containing mixtures lysed regularly 0.5 hour sooner than the controls. The effect is shown to be due to a lowering of the lytic threshold, i.e. the quantity of phage/bacterium requisite for lysis; Mn++ reduces the ratio from 54 to about 12. In the presence of Mn++ phage distribution is altered and in growing phage-bacteria mixtures the extracellular phage concentration is increased by manganese to approximately 4 times that occurring in the absence of manganese. There appears to be no enhancement of phage formation nor any affect on the rate of bacterial growth. As would be anticipated, for any given initial phage concentration the end titre after completion of lysis is less in the presence of manganese than in its absence. This is due to the reduced lytic threshold produced by Mn++, there consequently being less phage needed to bring about lytic destruction of the bacteria.  相似文献   

16.
Bacteriophage lysins as effective antibacterials   总被引:2,自引:0,他引:2  
Lysins are highly evolved enzymes produced by bacteriophage (phage for short) to digest the bacterial cell wall for phage progeny release. In Gram-positive bacteria, small quantities of purified recombinant lysin added externally results in immediate lysis causing log-fold death of the target bacterium. Lysins have been used successfully in a variety of animal models to control pathogenic antibiotic resistant bacteria found on mucosal surfaces and infected tissues. The advantages over antibiotics are their specificity for the pathogen without disturbing the normal flora, the low chance of bacterial resistance to lysins, and their ability to kill colonizing pathogens on mucosal surfaces, a capacity previously unavailable. Thus, lysins may be a much needed anti-infective in an age of mounting antibiotic resistance.  相似文献   

17.
Phage Typing Reactions on Brucella Species   总被引:1,自引:0,他引:1  
The nature of the phage typing reactions on Brucella species was determined by rates of adsorption and infection, one-step growth experiments, and susceptibility to lysis from without. The highest rates of adsorption and infection were obtained on smooth B. abortus cultures, and large clear plaques were produced. One or a few phage particles per B. neotomae cell killed about one-half of the cells, but some went through an infective cycle and released mature phage that resulted in production of small clear plaques. With B. suis, more phage particles per cell were required to kill, replication did not occur, and plaques were not observed. Still greater numbers of phage particles were required to cause some inhibition of growth of B. melitensis lawns. Rough Brucella cultures and species, such as B. ovis and B. canis, were not affected by the highest concentrations of phage. B. abortus cultures of intermediate colonial morphology adsorbed phage, but only a few infected cells (after a delayed latent period) released mature phage. An infected culture or colony appeared normal until spontaneous phage mutants appeared which could penetrate the cell wall more effectively than the parent phage. The mutant phage multiplied more rapidly, and the colony changed to a sticky white form.  相似文献   

18.
Effective disruption of Escherichia coli cells is achieved by the intracellularly accumulated recombinant murein hydrolase (Lactobacillus bacteriophage LL-H muramidase) after the addition of 5 mM thymol. Thymol destroys the integrity and electric potential of the cytoplasmic membrane, and as a consequence the muramidase can access and hydrolyze the cell wall murein leading to cell lysis. Lysis occurred within 5 min after the addition of thymol and seemed to be efficient at high culture densities. This lysis method does not require cell harvesting or addition of other cell wall weakening substances or exogenous enzymes. As a cell disruption method, thymol-triggered lysis is as efficient as sonication in the presence of 1% Triton. Furthermore, thymol did not interfere with the purification steps of Mur by expanded bed adsorption chromatography (EBA), suggesting that the lysis method presented here is well suited for large-scale production and purification of intracellular proteins of E. coli. Received 21 April 1998/ Accepted in revised form 5 December 1998  相似文献   

19.
The kinetics of loss from the cytoplasm and changes in ultrastructure of symbiont lambda particles after treatment of axenically cultivated lambda-bearing Paramecium aurelia with penicillin G was investigated. Low concentrations (1 to 2 unit/ml) of the antibiotic caused many particles within the cell to become filamentous; high concentrations (2,000 unit/ml) caused lysis of the particles without noticeably affecting the protozoan. The ED(50) value (2 to 3 unit/ml) was within the range of values found to cause lysis of many gram-negative bacteria. Rapidly dividing lambda were more vulnerable to the action of the antibiotic than slowly dividing particles. Nondividing particles were not affected by exposure to the antibiotic. Ultrastructural changes observed in lambda during lysis by penicillin G were consistent with the view that penicillin interferes with the synthesis of a vital component of the cell envelope of the particle, possibly a peptidoglycan similar to that found in the cell walls of bacteria. The deoxyribonucleic acid of lambda was dispersed throughout the particle as electron dense fibers enclosed within electron transparent areas. The cell envelope appeared to consist of at least two morphologically distinguishable layers, an inner layer homologous to the plasma membrane of bacteria and an outer layer homologous to the bacterial cell wall. Lambda may be regarded as a randomly distributed population of bacteria growing and dividing synchronously within the collective cytoplasm of its protozoan host.  相似文献   

20.
Spleen cells from uninfected control mice selectively lysed BALB/c 3T3 fibroblasts infected with mouse hepatitis virus (MHV), a murine coronavirus. Lysis of infected cells occurred within 3 hr, and histocompatibility between effector and target cells was not required. This natural, cell-mediated, virus-associated cytotoxicity differed from NK cell- and T cell-mediated lysis. Spleen cells from animals infected with MHV were enriched in NK activity and were more cytotoxic to YAC-1 target cells, but did not show enhanced cytotoxicity for MHV-infected target cells. Spleen cells from beige mice, which are deficient in NK cell activity, were able to lyse MHV-infected target cells, as were spleen cells from nude mice, which are deficient in T cell activity. Lysis of MHV-infected target cells could be mediated by cells from the spleen and, to a lesser extent, by cells from the bone marrow, but not by resident peritoneal cells or thymocytes. We suggest the term "virus killer (VK) activity" for this phenomenon. VK activity of splenocytes from different mouse strains correlated with the ability of the splenocytes to bind purified radiolabeled MHV virions. MHV virions caused agglutination of spleen leukocytes from susceptible mouse strains, indicating that leukocyte agglutination or adsorption may provide a useful assay for coronaviruses such as MHV which lack hemagglutinating activity. SJL mouse splenocytes did not bind MHV and did not lyse infected targets. MHV bound relatively well to splenocytes of other mouse strains, but poorly to thymocytes and erythrocytes. Binding of MHV to leukocytes was not influenced by 6 mM EDTA or EGTA, indicating a lack of requirement for Mg++ or Ca++. VK activity was also resistant to EDTA and EGTA, in contrast to NK activity, which was sensitive to those chelating agents. VK activity was also unaffected by actinomycin D, cycloheximide, or puromycin, indicating that new protein synthesis was not required for lysis. Antibody to interferon-alpha/beta did not block lysis, nor was there substantially enhanced lysis mediated by leukocytes from mice infected with virus and thus exposed to high levels of interferon. VK activity was blocked by antibody directed against the peplomeric glycoprotein E2 of MHV. VK activity required infected target cells, because cells with adsorbed MHV virions were not lysed by splenocytes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号