首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
When a stimulus arrives before recovery is complete there may be no response or only a partial response. A typical response appears to involve an immediate loss of potential at the inner protoplasmic surface but not at the outer surface. As long as recovery is incomplete only a part of the total potential is located at the inner protoplasmic surface and the loss of this part of the total potential can cause only a partial response; i.e., one of smaller magnitude than the normal. Even after the action curve has returned to the base line recovery may be incomplete and the response only a partial one. The return of the action curve to the base line means a recovery of total potential but if part of this is located at the outer protoplasmic surface and if this part is not lost when stimulation occurs the response can be only a partial one. During recovery there is a shift of potential from the outer to the inner protoplasmic surface. Not until this shift is completed can recovery be called complete. The response to stimulation then becomes normal because the loss of potential reaches the normal amount. In many cases the partial responses appear to conform to the all-or-none law. In other cases this is doubtful.  相似文献   

2.
Nitric oxide in biological systems   总被引:28,自引:0,他引:28  
  相似文献   

3.
The incretin hormones, glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), potentiate insulin secretion and are responsible for the majority of insulin secretion that occurs after a meal. They may also, however, have a fundamental role in pancreatic beta cell development and function, independently of their role in potentiating insulin secretion after a meal. This has led to observations that a loss of GIP or GLP-1 action affects normal beta cell function, however each one of the incretin hormones may compensate when the action of the other is lost and therefore the overall impact of the incretin hormones on beta cell function is not known. We therefore utilized a mouse line deficient in both the GLP-1 and GIP receptor genes, the double incretin receptor knockout (DIRKO), to determine the consequences of a lifelong, complete lack of incretin hormone action on beta cell function, in vivo, in intact animals. We found that DIRKO mice displayed impaired glucose tolerance and insulin secretion in response to both oral glucose and mixed meal tolerance tests compared to wild-type mice. Assessment of beta cell function using the hyperglycemic clamp technique revealed an 80% decrease in first phase insulin response in DIRKO mice, but a normal second phase insulin secretion. A similar decline was seen when wild-type mice were given acute intravenous injection of glucose together with the GLP-1 receptor antagonist Ex9-39. Ex vivo assessments of the pancreas revealed significantly fewer islets in the pancreata of DIRKO mice despite no differences in total pancreatic mass. Insulin secretion from isolated islets of DIRKO mice was impaired to a similar extent to that seen during the hyperglycemic clamp. Insulin secretion in wild-type islets was impaired by acute treatment with Ex9-39 to a similar extent as the in vivo intravenous glucose tolerance tests. In conclusion, a loss of the action of both incretin hormones results in direct impairment of beta cell function both in vivo and in vitro in a process that appears to be independent of the intestinally secreted incretin hormones. We therefore conclude that the incretin hormones together significantly impact both beta-cell function and beta-cell development.  相似文献   

4.
Many forms of irregular rhythm and of partial block occurring in the vertebrate heart can be duplicated in Nitella. In order to observe these phenomena the cells of Nitella are kept for 6 weeks or more in a nutrient solution. They are then exposed for 3 hours or less to 0.01 M NaCl, NaSCN, or guanidine chloride, which reduce the time required for the action current to about 1 second (the normal time is 15 to 30 seconds). A pacemaker is established at one end of the cell by placing it in contact with 0.01 M KCl. This produces action currents at the rate of about 1 a second. Apparently some parts of the cell are unable to follow this rapid pace and hence fall into irregular rhythms (arrhythmia) and fail to register all the impulses (partial block).  相似文献   

5.
1. Intracellular recordings were made from salivary gland cells of the mollusc Philine aperta. Salivary cell action potentials were produced in a dose-dependent manner in response to bath-application of octopamine, 5-hydroxytryptamine (5-HT) and certain related biogenic amines.2. Evidence that amines act on presynaptic receptors on nerve terminals rather than directly on gland cell receptors is presented. These receptors may serve to modulate salivary neuroglandular transmission.3. Octopamine and 5-HT action was reversibly blocked or reduced by the antagonists phentolamine, chlorpromazine, cyproheptidene, yohimbine, D-tubocurarine, hexamethonium and atropine.  相似文献   

6.
Host cell traversal by Plasmodium, the protozoan cause of malaria, is an essential part of this parasite''s virulence. In this process, the parasite enters a host cell through a parasite-induced pore, traverses the host cell, and then exits the host cell. Two P. berghei proteins, SPECT1 and SPECT2, are required for host cell traversal by the sporozoite form of the parasite. In the absence of either, no pore formation is observed. While SPECT2 has sequence homology to pore-forming proteins, SPECT1 has no homology to proteins of known structure or function. Here we present the 2.75 Å resolution structure of a slightly truncated version of P. berghei SPECT1. The structure reveals that the protein forms a four-helix bundle, with the rare feature of having all of these helices in parallel or antiparallel alignment. Also notable is the presence of a large, conserved, hydrophobic internal cavity in the protein, which may constitute a ligand-binding site or be indicative of partial instability in SPECT1, or both. The structure of SPECT1 will make possible targeted mutagenesis experiments aimed at understanding its mechanism of action in host cell traversal.  相似文献   

7.
8.
To identify predictive biomarkers for clinical responses to bortezomib treatment, 0.06 mL of each whole blood without any cell separation procedures was stimulated ex vivo using five agents, and eight mRNAs were quantified. In six centers, heparinized peripheral blood was prospectively obtained from 80 previously treated or untreated, symptomatic multiple myeloma (MM) patients with measurable levels of M-proteins. The blood sample was procured prior to treatment as well as 2-3 days and 1-3 weeks after the first dose of bortezomib, which was intravenously administered biweekly or weekly, during the first cycle. Six stimulant-mRNA combinations; that is, lipopolysaccharide (LPS)-granulocyte-macrophage colony-stimulating factor (GM-CSF), LPS-CXCL chemokine 10 (CXCL10), LPS-CCL chemokine 4 (CCL4), phytohemagglutinin-CCL4, zymosan A (ZA)-GMCSF and ZA-CCL4 showed significantly higher induction in the complete and very good partial response group than in the stable and progressive disease group, as determined by both parametric (t-test) and non-parametric (unpaired Mann-Whitney test) tests. Moreover, LPS-induced CXCL10 mRNA expression was significantly suppressed 2-3 days after the first dose of bortezomib in all patients, as determined by both parametric (t-test) and non-parametric (paired Wilcoxon test) tests, whereas the complete and very good partial response group showed sustained suppression 1-3 weeks after the first dose. Thus, pretreatment LPS-CXCL10 mRNA and/or the six combinations may serve as potential biomarkers for the response to bortezomib treatment in MM patients.  相似文献   

9.
Recently, there has been an increasing amount of literature published on the effects of 4-phenylbutyric acid (4-PBA) in various biological systems. 4-PBA is currently used clinically to treat urea cycle disorders under the trade name Buphenyl. Recent studies however have explored 4-PBA in the context of a low weight molecular weight chemical chaperone. Its properties as a chemical chaperone prevent misfolded protein aggregation and alleviate endoplasmic reticulum (ER) stress. As the ER is responsible for folding proteins targeted for use in membranes or secreted out of the cell, failure of maintaining adequate ER homeostasis may lead to protein misfolding and subsequent cell and organ pathology. Accumulation of misfolded proteins within the ER activates the unfolded protein response (UPR), a molecular repair response. The activation of the UPR aims to restore ER and cellular proteostasis by regulating the rate of synthesis of newly formed proteins as well as initiating molecular programs aimed to help fold or degrade misfolded proteins. If proteostasis is not restored, the UPR may initiate pro-apoptotic pathways. It is suggested that 4-PBA may help fold proteins in the ER, attenuating the activation of the UPR, and thus potentially alleviating various pathologies. This review discusses the biomedical research exploring the potential therapeutic effects of 4-PBA in various in vitro and in vivo model systems and clinical trials, while also commenting on the possible mechanisms of action.  相似文献   

10.
Klein RM 《Plant physiology》1979,63(1):114-116
The differential cell elongation of cress (Lepidium sativum) roots that results in geotropic bending can be decreased by green radiation with an action spectrum peaking at 550 nm. This decrease can be negated by prior or simultaneous irradiation by orange-red light with an action spectrum peaking at 620 nm. The green radiation appears to be effective during the cell elongation phase of geotropic response.  相似文献   

11.
Oomycete plant pathogens, such as Phytophthora, downy mildews and Pythium, have devastating disease effects on numerous crop and ornamental plants. Various types of genetic resistance to oomycetes occur in plants, and can be determined at the subspecific or varietal level (race or cultivar-specific resistance), or at the species or genus level (nonhost resistance). In addition, resistance might be a quantitative phenotype (partial resistance). Resistance reactions are often associated with the hypersensitive response – a programed cell death pathway. Recent advances in the genetic, biochemical and cytological characterization of disease resistance suggests that the hypersensitive response is associated with all forms of resistance to Phytophthora and downy mildews. Identification of the resistance genes involved in nonhost and partial resistance to oomycetes remains an important challenge.  相似文献   

12.
5-Fluorouracil (5-FU), a drug with numerous mechanisms of action which has a long-term suppressive effect on human cancer cell proliferation, mediates both partial dephosphorylation and inactivation of poly(A) polymerase (PAP) [EC. 2.7.7.19] as detected by immunoblotting analysis and non-specific enzyme assay, respectively, in human carcinoma HeLa and diploid WISH cells at a concentration of 100 microM. When the same experiment is done in the presence of phosphatase inhibitors, 5-FU-induced partial PAP dephosphorylation is abolished. Moreover, a cell type-modulated, differential response of HeLa cells (5-FU chemosensitive cells) versus WISH cells (drug-resistant diploid cells) is observed. These results suggest that 5-FU induces early direct or indirect changes in the structure and function of PAP and may regulate pre-mRNA cleavage-polyadenylation.  相似文献   

13.
Ren YY  West CA 《Plant physiology》1992,99(3):1169-1178
Cell-free extracts of UV-irradiated rice (Oryza sativa L.) leaves have a much greater capacity for the synthesis from geranylgeranyl pyrophosphate of diterpene hydrocarbons, including the putative precursors of rice phytoalexins, than extracts of unstressed leaves (KA Wickham, CA West [1992] Arch Biochem Biophys 293: 320-332). An elicitor bioassay was developed on the basis of these observations in which 6-day-old rice cell suspension cultures were incubated for 40 hours with the substance to be tested, and an enzyme extract of the treated cells was assayed for its diterpene hydrocarbon synthesis activity as a measure of the response to elicitor. Four types of cell wall polysaccharides and oligosaccharide fragments that have elicitor activity for other plants were tested. Of these, polymeric chitin was the most active; a suspension concentration of approximately 7 micrograms per milliliter gave 50% of the maximum response in the bioassay. Chitosan and a branched β-1,3-glucan fraction from Phytophthora megasperma f. sp. glycinea cell walls were only weakly active, and a mixture of oligogalacturonides was only slightly active. A crude mycelial cell wall preparation from the rice pathogen, Fusarium moniliforme, gave a response comparable to that of chitin, and this activity was sensitive to predigestion of the cell wall material with chitinase before the elicitor assay. N-Acetylglucosamine, chitobiose, chitotriose, and chitotetrose were inactive as elicitors, whereas a mixture of chitin fragments solubilized from insoluble chitin by partial acid hydrolysis was highly active. Constitutive chitinase activity was detected in the culture filtrate and enzyme extract of cells from a 6-day-old rice cell culture; the amount of chitinase activity increased markedly in both the culture filtrate and cell extracts after treatment of the culture with chitin. We propose on the basis of these results that soluble chitin fragments released from fungal cell walls through the action of constitutive rice chitinases serve as biotic elicitors of defense-related responses in rice.  相似文献   

14.
Boberek JM  Stach J  Good L 《PloS one》2010,5(10):e13745

Background

Berberine is a plant alkaloid that is widely used as an anti-infective in traditional medicine. Escherichia coli exposed to berberine form filaments, suggesting an antibacterial mechanism that involves inhibition of cell division. Berberine is a DNA ligand and may induce filamentation through induction of the SOS response. Also, there is biochemical evidence for berberine inhibition of the cell division protein FtsZ. Here we aimed to assess possible berberine mechanism(s) of action in growing bacteria using genetics tools.

Methodology/Principal Findings

First, we tested whether berberine inhibits bacterial growth through DNA damage and induction of the SOS response. The SOS response induced by berberine was much lower compared to that induced by mitomycin C in an SOS response reporter strain. Also, cell filamentation was observed in an SOS-negative E. coli strain. To test whether berberine inhibits FtsZ, we assessed its effects on formation of the cell division Z-rings, and observed a dramatic reduction in Z-rings in the presence of berberine. We next used two different strategies for RNA silencing of ftsZ and both resulted in sensitisation of bacteria to berberine, visible as a drop in the Minimum Inhibitory Concentration (MIC). Furthermore, Fractional Inhibitory Concentration Indices (FICIs) showed a high level of synergy between ftsZ silencing and berberine treatment (FICI values of 0.23 and 0.25 for peptide nucleic acid- and expressed antisense RNA-based silencing of ftsZ, respectively). Finally, over-expression of ftsZ led to a mild rescue effect in berberine-treated cells.

Conclusions

The results argue against DNA binding as the primary mechanism of action of berberine and support the hypothesis that its antibacterial properties are due to inhibition of the cell division protein FtsZ. In addition, the genetic approach used here provides a means to rapidly test the activity of other putative FtsZ inhibitors.  相似文献   

15.
A brassinosteroid treatment of light-grown first internode sections of Phaseolus vulgaris results in an increased bending response following unilateral indole-3-acetic acid (IAA) application. Reverse isotope dilution analysis shows that this increased response is not due to an increase in the concentration of applied IAA in the tissue or a change in the amount of IAA conjugated. Treatment with the brassinosteroid also does not affect the rate of IAA transport as measured using the agar block method. These results indicate that even though brassinosteroid potentiates auxin action, it does not have a direct effect on IAA uptake, metabolism, or cell to cell transport.  相似文献   

16.
Sporangiophores of Phycomyces do not grow directly towards a horizontal beam of light, but equilibrate at an angle of about 30° above the horizontal. After describing several related observations, this paper suggests that the dioptric properties of an obliquely illuminated cylindrical lens, illustrated by a dummy cell, as well as a negative geotropic response, play major roles in determining the direction of growth. The shift of the equilibrium direction of growth towards the vertical, or a purely geotropic response, over a tenfold range of very low intensities (around 106 quanta/cm2 sec., or 10-13watt/cm2) has been studied, and an action spectrum made, measuring the quantum fluxes producing a standard intermediate equilibrium direction of growth at different wavelengths. This may differ from the action spectra at higher intensities in lacking conspicuous maxima from 370 to 490 mµ. However, in the ultraviolet it parallels the other spectra, although without showing the much higher quantum efficiency of ultraviolet relative to visible light previously noted. Possible interpretations are discussed.  相似文献   

17.
We and other authors have recently shown that the pattern of the immune response to components of anthrax, the Bacillus anthracis lethal toxin, is complex. In addition to the neutralizing antibodies, the antitoxin antibody pool contains antibodies enhancing the toxin lethal action. We mapped the epitopes in the protective antigen that are responsible for the induction of both antibody types. In this study, we obtained new data on the cytotoxicity of the B. anthracis lethal toxin toward the J774 A.1 cell line in the presence of monoclonal antibodies to various domains of the protective antigen and the lethal factor. The role of the Fc fragment of immunoglobulins in enhancing the lethal toxin action was shown. These results may serve as a basis for the development of a new generation vaccine for anthrax.  相似文献   

18.
The development of resistance in response to interferon depends on cellular RNA synthesis and probably also on cellular protein synthesis. The evidence for these requirements is reviewed, as well as the proposal that this evidence indicates the existence of a specific response of the cell to interferon, involving the induced synthesis of an antiviral protein. Direct evidence for such an interpretation has not been obtained, and alternative explanations are discussed which do not require quantitative or qualitative differences in the RNA and protein made in cells exposed to interferon. The possible role of the ribosome in the antiviral action of interferon is also discussed.  相似文献   

19.
Sirtuins are proteins belonging to the group of NADH-dependent deacetylase and mono-ADP-ribosyltransferase enzymes. Sirtuins have been discovered for the first time in yeasts, subsequent studies have shown their presence in bacteria, plants and animals. These enzymes are frequently called longevity enzymes due to the fact that they are part of genetic apparatus involved in aging control. In animals, sirtuins are key regulators of cell defense in response to stress caused by many metabolic processes; they are also involved in the regulation of cell division, metabolism, gene silencing and genetic material repair as well as apoptosis. Thus far, only several well-known research teams have been studying plant proteins resembling animal sirtuins. Considering the fact how essential functions sirtuins play in other organisms, it is extremely interesting to understand their role in plants, especially that the knowledge about them is still limited. It is believed that the function of sirtuins in Arabidopsis thaliana is associated with mitochondrial energy metabolism. Possibly they may also control the synthesis of auxins or proteins involved in their transport, or they may be responsible for regulating cellular response to auxin action. In rice, sirtuins are necessary for the protection against genomic instability and cell damage that guarantee their growth. They also take part in a defensive response against Pseudomonas syringae. They may also be involved in the ripening of fruits. Moreover, their functions are associated with photosynthetic activity and aging of leaves.  相似文献   

20.
We have defined several parameters surrounding the heat shock response of cultured cells of carrot (Daucus carota L.) and have found that these cells exhibit a typical “higher plant” heat shock response. In particular, the resolution of the heat shock proteins (hsps) by two-dimensional polyacrylamide gel electrophoresis (PAGE) has revealed a pattern of proteins very similar to the hsps from soybean; specifically, the low molecular weight class is composed of approximately 15 to 20 different polypeptides which likely represent different members of a small gene family. In addition, we have compared the (2-D) PAGE profiles of hsps isolated from several different cultured cell lines currently maintained in our laboratory and have found notable differences in the low molecular weight hsps between cell lines. Some of the differences appear to be quantitative, while others may be qualitative. Each of the cell lines was derived from a different seedling of the same seed stock of the same cultivar; thus, genetic differences should be minimized. In addition, two of the cell lines, which show clear differences, were initially derived from a single parental line, and thus arose from a single genetic stock. Possible explanations for the cell line differences observed here are either partial aneuploidy or modified gene regulation resulting from molecular changes during the time in culture (i.e. somaclonal variation). These observations serve to highlight the potential for variation that exists in cells in culture even for such a highly conserved response and gene set as the heat shock genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号