首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flicker response curves (man) obtained with images formed entirely within the fovea are like those secured with lower animals having only one general class of retinal receptors. They are normal probability integrals (F vs. log Im), and the properties of their parameters agree with those for visually simplex animals and for the "cone" portions of contours exhibiting visual duplexity. By several different procedures, involving experimental modifications of the "cone" curve, the "rod" part of the typical human duplex curve can be obtained free from overlapping by the extrapolated "cone" curve. It then has the probability integral form which the lower segment does not directly exhibit when combined with "cone" effects. These results are discussed with reference to the statistical nature of the fundamental form of the flicker contour and to the interpretation of duplex curves produced by the neural integration of two independently modifiable groups of sensory effects.  相似文献   

2.
1. When there is projected on the retina (man, monocularly) the shadow of a grid which forms a visual field in several distinct pieces (not including the fovea in the present tests), the ordinary properties of the flicker recognition contour (F vs. log I) as a function of the light-time cycle fraction (tL) can be markedly disturbed. In the present experiments flicker was produced by the rotation of a cylinder with opaque vertical stripes. In the absence of such a grid shadow the "cone" segments of the contours form a set in which Fmax. and the abscissa of inflection are opposite but rectilinear functions of tL, while the third parameter of the probability integral (σ''log I) remains constant. This is the case also with diverse other animals tested. In the data with the grid, however, analysis shows that even for low values of tL (up to 0.50) there occurs an enhancement of the production of elements of neural effect, so that Fmax. rises rather than falls as ordinarily with increase of tL, although σ''log I stays constant and hence the total number of acting units is presumed not to change. This constitutes valid evidence for neural integration of effects due to the illumination of separated retinal patches. Beginning at tL = 0.75, and at 0.90, the slope of the "cone" curve is sharply increased, and the maximum F is far above its position in the absence of the grid. The decrease of σ''log I (the slope constant) signifies, in terms of other information, an increase in the number of acting cone units. The abscissa of inflection is also much lowered, relatively, whereas without the grid it increases as tL is made larger. These effects correspond subjectively to the fact that at the end-point flicker is most pronounced, on the "cone" curve, along the edges of the grid shadow where contrast is particularly evident with the longer light-times. The "rod" portion of the F - log I contour is not specifically affected by the presence of the grid shadow. Its form is obtainable at tL = 0.90 free from the influence of summating "cone" contributions, because then almost no overlapping occurs. Analysis shows that when overlapping does occur a certain number of rod units are inhibited by concurrent cone excitation, and that the mean contribution of elements of neural action from each of the non-inhibited units is also reduced to an extent depending on the degree of overlap. The isolated "rod" curve at tL = 0.90 is quite accurately in the form of a probability integral. The data thus give a new experimental proof of the occurrence of two distinct but interlocking populations of visual effects, and experimentally justify the analytical procedures which have been used to separate them. 2. The changing form of the F - log I contour as a function of tL, produced in man when the illuminated field is divided into parts by a shadow pattern, is normally found with the bird Taeniopygia castenotis (Gould), the zebra finch. The retina has elements of one general structural type (cones), and the F - log I contour is a simplex symmetrical probability integral. The eye of this bird has a large, complex, and darkly pigmented pecten, which casts a foliated shadow on the retina. The change in form of the F - log I curve occurs with tL above 0,50, and at tL = 0.90 is quite extreme. It is more pronounced than the one that is secured in the human data with the particular grid we have used, but there is no doubt that it could be mimicked completely by the use of other grids. The increase of flicker acuity due to the pecten shadow is considerable, when the dark spaces are brief relative to the light. The evidence thus confirms the suggestion (Menner) drawn from comparative natural history that the visual significance of the avian pecten might be to increase the sensory effect of small moving images. It is theoretically important that (as in the human experiment) this may be brought about by an actual decrease of effective retinal area illuminated. It is also significant theoretically that despite the presence of shadows of pecten or of grid, and of the sensory influences thus introduced, the probability integral formulation remains effective.  相似文献   

3.
For spectral regions associated with violet, blue, green, and red the relation between mean critical flash intensity Im for visual flicker and the flash frequency F is modified as already found with white light when the light time fraction tL in the flash cycle is changed. For a square image 6.13° on a side, foveally fixated, the "rod" and "cone" contributions to the duplex contour are analyzed in the way already used for white. It is pointed out that several customary qualitative criteria for cone functioning do not necessarily give concordant results. The analysis shows that the three parameters of the probability summations giving the "rod" and "cone" curves are changed independently as a function of wave-length composition of the light, and of the light time fraction. The correlation of these changes, and of those found in the associated variability functions, can be understood in terms of differences in (1) the numbers of neural units potentially excitable and (2) in the numbers of elements of neural effect obtained from them. In a multivariate situation of this kind it is necessary to compare intensities of luminous flux required to activate half the total population of potentially available elements when this total size is held constant for the different conditions. The results of this comparison, for the filtered lights used, are discussed in relation to certain aspects of excitation vs. wave-length. The problem is a general one, arising where the effects produced as a function of a particular variable are concerned. In the distinction between (1) units excited and (2) the actions they produce may be found the clue for the curious fact that with certain wave-lengths the critical intensities are lower than for white. The extension of the observations to other parts of the retina may be expected to further this analysis.  相似文献   

4.
The flicker response contour has been determined for several species and types of the teleosts Xiphophorus (X.) and Platypoecilius (P.) under the same conditions. The curve (F vs. log Im) is the same for representatives of each generic type, but is different for the two genera. Its duplex nature is analyzable in each instance by application of the probability integral equation to the rod and cone constituent parts. The parameters of this function provide rational measures of invariant properties of the curves, which have specific values according to the genetic constitution of the animal. The F 1 hybrids (H'''') of X. montezuma x P. variatus show dominance of the X. properties with respect to cone Fmax. and σ'' log I, but an intermediate value of the abscissa of inflection (τ''). The rod segment shows dominance of σ'' log I from P., but an intermediate value of Fmax. and of τ''. The composite flicker curve involves the operation of two distinct assemblages of excitable elements, differing quantitatively but not qualitatively in physicochemical organization, probably only secondarily related to the histological differentiation of rods and cones because almost certainly of central nervous locus, but following different rules in hereditary determination, and therefore necessarily different in physical organization. The interpretation of the diverse behavior of the three parameters of the probability summation is discussed, particularly in relation to the physical significance of these parameters as revealed by their quantitative relations to temperature, retinal area, and light time fraction in the flash cycle, and to their interrelations in producing the decline of rod effects at higher intensities. It is stressed that in general the properties of the parameters of a chosen interpretive analytical function must be shown experimentally to possess the physical properties implied by the equation selected before the equation can be regarded as describing those invariant properties of the organic system concerned upon which alone can deduction of the nature of the system proceed. The importance of genetic procedures in furthering demonstration that the biological performance considered in any particular case exhibits constitutionally invariant features provides a potentially powerful instrument in such rational analysis.  相似文献   

5.
For the teleosts Xiphophorus montezuma, Platypoecilius maculatus, and their F 1 hybrids the temperature characteristics (µ in Arrhenius'' equation) are the same for the shift of the low intensity and the high intensity segments of the respective and different flicker response contours (critical intensity I as a function of flash frequency F, with light time fraction constant, at 50 per cent). The value of µ is 12,500 calories or a very little less, over the range 12.5 to 36°. This shows that 1/I can be understood as a measure of excitability, with F fixed, and that the excitability is governed by the velocity of a chemical process common to both the classes of elements represented in the duplex performance curve (rods and cones). It is accordingly illegitimate to assume that the different shapes of the rod and cone branches of the curves are determined by differences in the chemical mechanisms of excitability. It is also forbidden to assume that the differing form constants for the homologous segments in the curves for two forms (X. and P.) are the reflections of a difference in the chemical factors of primary excitability. These differences are determined by statistical factors of the distribution of excitabilities among the elements implicated in the sensory effect vs. intensity function, and are independent of temperature and of the temperature characteristic. It must be concluded that the physicochemical nature of the excitatory process cannot be deduced from the shape of the performance contour. The form constants (σ''log I and Fmax.) for F vs. log I are specifically heritable in F 1, although µ is here the same as for X. and P. In an intergeneric cross one cannot in general expect Mendelian simplicity of segregation in subsequent generations, and in the present case we find that F 2 individuals are indistinguishable from F 1, both as regards F vs. log I and as regards the variation of I within a group of 17 individuals. The result in F 2 definitely shows, however, that certain specific statistical form constants for the F-log I contour are transmissible in inheritance. It is pointed out that there thus is provided an instance in which statistical (distribution) factors in performance characteristics involving the summating properties of assemblages of cellular units are heritable in a simple manner without the implication of detectable differences in chemical organization of the units involved. This has an important bearing upon the logic of the theory of the gene.  相似文献   

6.
Measurements of ΔI as a function of retinal area illuminated have been obtained at various levels of standard intensity I 1, using "white" light and light of three modal wave-lengths (λ465, 525, 680), for monocular stimulation and for simultaneous excitation of the two eyes ("binocular"), using several methods of varying (rectangular) area and retinal location, with control of exposure time. For data homogeneous with respect to method of presentation, log ΔIm = -Z log A + C, where ΔI = Ĩ 2I 1, A is area illuminated, and C is a terminal constant (= log ΔIm for A = 1 unit) depending on the units in which ΔI and A are expressed, and upon I 1. The equation is readily deduced on dimensional grounds, without reference to specific theories of the nature of ΔI or of retinal area in terms of its excitable units. Z is independent of the units of I and A. Experimentally it is found to be the same for monocular and binocular excitations, as is to be expected. Also as is expected it is not independent of λ, and it is markedly influenced by the scheme according to which A is varied; it depends directly upon the rate at which potentially excitable elements are added when A is made to increase. For simultaneous excitation of the two eyes (when of very nearly equivalent excitability), ΔĪB is less than for stimulation of either eye alone, at all levels of I 1, A, λ. The mean ratio (ΔĪL + ΔĪR)/2 to ΔIB was 1.38. For white light, doubling A on one retina reduces ΔIm in the ratio 1.21, or a little less than for binocular presentation under the same conditions. These facts are consistent with the view that the properties of ΔI are quantitatively determined by events central to the retina. The measure σI of organic variation in discrimination of intensities and ΔIm are found to be in simple proportion, independent of I 1, A, λ (and exposure time). Variability (σI) is not a function of the mode of presentation, save that it may be slightly higher when both retinas are excited, and its magnitude (for a given level of ΔIm) is independent of the law according to which the adjustable intensity I 2 is instrumentally controlled.  相似文献   

7.
The relation between flash duration and mean critical intensity (white light) for threshold recognition of visual flicker, as a function of flash frequency, was investigated by means of measurements at five values of the light-time fraction: 0.10, 0.25, 0.50, 0.75, 0.90, with flash frequencies of the interrupted beam ranging from 2 to 60 per second. A square area, 6.1 x 6.1°, centrally fixated) was viewed monocularly; the discriminometer used provides automatically an artificial pupil 1.8 mm. in diameter. Except for the slight day-to-day fluctuation in the magnitudes of the parameters, the data for the observer used are shown to form an essentially homogeneous group. As for other animals tested, the F - log Im curve is enlarged and moved toward lower flash intensities as the light-time fraction is decreased. The high intensity segments of the duplex curves are fitted by normal probability integrals for which F max. and the abscissa of inflection are rectilinear functions of tL(tL + tD), with opposite slopes. The third parameter, (σ''log I, is invariant. The low intensity segments are composites, their shapes determined by the summation of the lower part of the high intensity curve with an overlapping low intensity population of effects. Both the rising and the declining branches of this latter assemblage suffer competitive partial suppression by the effects in the high intensity population. The detailed analysis shows that these results are consistent with the theory of the central, rather than peripheral, location of the dynamically recognizable elements in the determination of flicker.  相似文献   

8.
The flicker response contour for the frog Rana pipiens exhibits the duplex character typical for most vertebrates. By comparison (under the same conditions of temperature, 21.5°, and light-time fraction, = 0.5), the low intensity section of the F - log I curve is the smallest thus far found. The cone portion of the curve is satisfactorily described by a probability integral. The rod part represents the addition of a small group of sensory effects upon the lower end of the cone curve, from which it can be analytically separated. The relation between the two groups of sensory effects permits certain tests of the rule according to which (in homogeneous data) Im and σ1I1 are in direct proportion.  相似文献   

9.
From the data of experiments with bees in which threshold response is employed as a means of recognizing visual discrimination between stripes of equal width alternately illuminated by intensities I 1 and I 2, it is shown that the detectable increment of intensity ΔI, where ΔI = I 2 - I 1, is directly proportional to σI2 (I 1 being fixed). From tests of visual acuity, where I 1 = 0 and the width of the stripes is varied, σI2 = kI 2 + const.; here I 2 = ΔI, and ΔI/I 2 = 1. When the visual excitability of the bee is changed by dark adaptation, λIkΔI (= k'' σΔI) = k'''' I + const. For the measurements of critical illumination at threshold response to flicker, σI2 (= σΔI) = k I 2 = k'' ΔI + const. The data for critical illumination producing threshold response to flicker in the sun-fish Lepomis show for the rods σI2 = K I 2 for the cones σI2 = K''(I 2 + const.). The data thus indicate that in all these experiments essentially the same visual function is being examined, and that the recognition of the production of a difference in effect by alternately illuminated stripes takes place in such a way that dI)/dI2) = const., and that ΔI is directly proportional to I (or "I 2," depending on the nature of the experiment). It is pointed out that the curve for each of the cases considered can be gotten equally well if mean I or σI is plotted as a function of the independent variable involved in the experiment. Certain consequences of these and related facts are important for the treatment of the general problem of intensity discrimination.  相似文献   

10.
The flicker contour for the house sparrow Passer domesticus is duplex, corresponding to the presence of both rods and cones in the retina. The presence of the pecten brings about changes in the "cone" part of the contour when the light-time in the flash cycle is varied. These changes are of the same sort as those we have already described for the visually simplex zebra finch, and for man provided with an artificial "pecten shadow." The changes are such as to greatly enhance flicker acuity for small dark-times (moving stripe technique). The form of the scotopic part of the duplex contour (also as in the case with man) gives no evidence that rod excitation is specifically influenced by the presence of the pecten. The changing integration of "rod" and "cone" effects as the light-time fraction is altered provides another means of testing the theory used for the analytical separation of the two components of the duplex flicker contour.  相似文献   

11.
12.
From the relations between critical illumination in a flash (Im) and the flash frequency (F) for response of the sunfish to visual flicker when the proportion of light time to dark time (tL/tD) in a flicker cycle is varied at one temperature (21.5°) the following results are obtained: At values of tL/tD between 1/9 and 9/1 the F - log Im curves are progressively shifted toward higher intensities and lower Fmax.. Fmax. is a declining rectilinear function of the percentage of the flash cycle time occupied by light. The rod and the cone portions of the flicker curve are not shifted to the same extent. The cone portion and the rod region of the curve are each well described by a probability integral. In terms of F as 100 F/Fmax. the standard deviation of the underlying frequency distribution of elemental contributions, summed to produce the effect proportional to F, is independent of tL/tD. The magnitude of log Im at the inflection point (r''), however, increases rectilinearly with the percentage light time in the cycle. The proportionality between Im and σII1 is independent of tL/tD. These effects are interpreted as consequences of the fact that the number of elements of excitation available for discrimination of flicker is increased by increasing the dark interval in a flash cycle. Decreasing the dark interval has therefore the same kind of effect as reducing the visual area, and not that produced by decreasing the temperature.  相似文献   

13.
Freshly dissociated myocytes from nonpregnant, pregnant, and postpartum rat uteri have been studied with the tight-seal patch-clamp method. The inward current contains both INa and ICa that are vastly different from those in tissue-cultured material. INa is abolished by Na+-free medium and by 1 μM tetrodotoxin. It first appears at ∼−40 mV, reaches maximum at 0 mV, and reverses at 84 mV. It activates with a voltage-dependent τ of 0.2 ms at 20 mV, and inactivates as a single exponential with a τ of 0.4 ms. Na+ conductance is half activated at −21.5 mV, and half inactivated at −59 mV. INa reactivates with a τ of 20 ms. ICa is abolished by Ca2+-free medium, Co2+ (5 mM), or nisoldipine (2 μM), and enhanced in 30 mM Ca2+, Ba2+, or BAY-K 8644. It first appears at ∼−30 mV and reaches maximum at +10 mV. It activates with a voltage-dependent τ of 1.5 ms at 20 mV, and inactivates in two exponential phases, with τ''s of 33 and 133 ms. Ca2+ conductance is half activated at −7.4 mV, and half inactivated at −34 mV. ICa reactivates with τ''s of 27 and 374 ms. INa and ICa are seen in myocytes from nonpregnant estrus uteri and throughout pregnancy, exhibiting complex changes. The ratio of densities of peak INa/ICa changes from 0.5 in the nonpregnant state to 1.6 at term. The enhanced role of INa, with faster kinetics, allows more frequent repetitive spike discharges to facilitate simultaneous excitation of the parturient uterus. In postpartum, both currents decrease markedly, with INa vanishing from most myocytes. Estrogen-enhanced genomic influences may account for the emergence of INa, and increased densities of INa and ICa as pregnancy progresses. Other influences may regulate varied channel expression at different stages of pregnancy.  相似文献   

14.
Monocular threshold stimulus intensities (ΔIo, photons) were measured along the 0–180° meridian of human retinae for three observers. The test image was small (= 0.08°) and of short duration (= 0.20 second). ΔIo was found to decrease as the angular distance from the fovea was increased. Actual counts of the number of retinal elements per mm.2 along the 0–180° meridian (Østerberg) were compared with the obtained results. No direct correlation was found to exist between visual sensitivity and the number of retinal elements. Binocular threshold stimuli were also measured along the same meridian. The form of the function relating binocular visual sensitivity and retinal position was discovered to be essentially similar to that for monocular sensitivity, but is more symmetrical about the center of the fovea. The magnitude of the binocular measurement is in each case smaller than that of the monocular threshold stimulus intensity for the more sensitive eye. The ratio is statistically equal to 1.4 (a fact which suggests Piper''s rule). These results are shown to be consistent with the hypothesis that the process critical for the eventuation of the threshold response is localized in the central nervous system. They are not consistent with the view that the quantitative properties of visual data are directly determined by properties of the peripheral retina.  相似文献   

15.
An R-phycoerythrin (R-PE) was isolated by gel filtrations on Sepharose CL-4B and Sephadex G-150 from the phycobiliprotein extract of the marine red macroalga Polysiphonia urceolata Grev and further purified by ion exchange chromatography on DEAE-Sepharose Fast Flow. The purified R-PE showed three absorption peaks at 498 nm, 538 nm, 566 nm and one fluorescent emission maximum at 577 nm. Although the R-PE showed a single band on the examination by native PAGE, it exhibited two very close bands at pH about 4.7 in native isoelectric focusing (IEF). Polypeptide analysis of the R-PE demonstrated that it contained four chromophore-carrying subunits, α18.2, β20.6, γ31.6 (γ''), γ34.6 (γ), and no colorless polypeptide; its subunit composition was 6α18.2:6β20.6:1 γ31.6:2γ34.6. The α and β subunits were distributed within a acidic pH range from 5.0 to 6.0 in denaturing IEF and the γ subunits were in a basic pH range from 7.6 to 8.1. These results reveal that the prepared R-PE may exist in two hexamers of γ (αβ)3 γ (αβ)3γ'' and γ (αβ)3 γ''(αβ)3 γ and that the R-PE participate in the rod domain assembly of P. urceolata phycobilisomes by stacking each of its trimer (αβ)3 face-to-face with the aid of one γ subunit (γ or γ'').  相似文献   

16.
The flicker response contour for the isopod Asellus is a simple probability integral (F - log I) over the whole determinable range (F = 1 to 51). This contrasts with the "distorted" asymmetrical curves obtained with Apis, Anax, and other arthropods with large convex eyes. The explanation of the distortion as due to mechanical conditions affecting photoreception is therefore confirmed, as the structure of the Asellus eye does not make such a factor likely to be expected for this case. The Asellus curve agrees with the only other available complete and uncomplicated flicker response contour (from Pseudemys, turtle with rod-free retina), in showing the superiority of the probability integral formulation as compared with certain others which have been suggested. It is noted as a curious and probably important fact that the relative dispersion of the intensity thresholds (σ''log I) for the elements implicated in determining the flicker contour appears to be identical in bee, dragon fly nymph, and isopod. Other relevant information derived from similar experiments with vertebrates shows that this quantity is specifically determined by the organization of the animal. The nature of the common feature of neural organization in three such diverse arthropods, as contrasted with the diversity seen within one class of vertebrates (e.g., teleosts), remains to be discovered.  相似文献   

17.
G protein-gated K+ channels (GIRK; Kir3), activated by Gβγ subunits derived from Gi/o proteins, regulate heartbeat and neuronal excitability and plasticity. Both neurotransmitter-evoked (Ievoked) and neurotransmitter-independent basal (Ibasal) GIRK activities are physiologically important, but mechanisms of Ibasal and its relation to Ievoked are unclear. We have previously shown for heterologously expressed neuronal GIRK1/2, and now show for native GIRK in hippocampal neurons, that Ibasal and Ievoked are interrelated: the extent of activation by neurotransmitter (activation index, Ra) is inversely related to Ibasal. To unveil the underlying mechanisms, we have developed a quantitative model of GIRK1/2 function. We characterized single-channel and macroscopic GIRK1/2 currents, and surface densities of GIRK1/2 and Gβγ expressed in Xenopus oocytes. Based on experimental results, we constructed a mathematical model of GIRK1/2 activity under steady-state conditions before and after activation by neurotransmitter. Our model accurately recapitulates Ibasal and Ievoked in Xenopus oocytes, HEK293 cells and hippocampal neurons; correctly predicts the dose-dependent activation of GIRK1/2 by coexpressed Gβγ and fully accounts for the inverse Ibasal-Ra correlation. Modeling indicates that, under all conditions and at different channel expression levels, between 3 and 4 Gβγ dimers are available for each GIRK1/2 channel. In contrast, available Gαi/o decreases from ~2 to less than one Gα per channel as GIRK1/2''s density increases. The persistent Gβγ/channel (but not Gα/channel) ratio support a strong association of GIRK1/2 with Gβγ, consistent with recruitment to the cell surface of Gβγ, but not Gα, by GIRK1/2. Our analysis suggests a maximal stoichiometry of 4 Gβγ but only 2 Gαi/o per one GIRK1/2 channel. The unique, unequal association of GIRK1/2 with G protein subunits, and the cooperative nature of GIRK gating by Gβγ, underlie the complex pattern of basal and agonist-evoked activities and allow GIRK1/2 to act as a sensitive bidirectional detector of both Gβγ and Gα.  相似文献   

18.
Flicker response curves have been obtained at 21.5°C. for three genera of fresh water teleosts: Enneacanthus (sunfish), Xiphophorus (swordtail), Platypoecilius (Platy), by the determination of mean critical intensities for response at fixed flicker frequencies, and for a certain homogeneous group of backcross hybrids of swordtail x Platy (Black Helleri). The curves exhibit marked differences in form and proportions. The same type of analysis is applicable to each, however. A low intensity rod-governed section has added to it a more extensive cone portion. Each part is accurately described by the equation F = Fmax./(1 + e -p log-p logI/Ii), where F = flicker frequency, I = associated mean critical intensity, and Ii is the intensity at the inflection point of the sigmoid curve relating F to log I. There is no correlation between quantitative features of the rod and cone portions. Threshold intensities, p, Ii, and Fmax. are separately and independently determined. The hybrid Black Helleri show quantitative agreement with the Xiphophorus parental stock in the values of p for rods and cones, and in the cone Fmax.; the rod Fmax. is very similar to that for the Platy stock; the general level of effective intensities is rather like that of the Platy form. This provides, among other things, a new kind of support for the duplicity doctrine. Various races of Platypoecilius maculatus, and P. variatus, give closely agreeing values of Im at different flicker frequencies; and two species of sunfish also agree. The effect of cross-breeding is thus not a superficial thing. It indicates the possibility of further genetic investigation. The variability of the critical intensity for response to flicker follows the rules previously found to hold for other forms. The variation is the expression of a property of the tested organism. It is shown that, on the assumption of a frequency distribution of receptor element thresholds as a function of log I, with fluctuation in the excitabilities of the marginally excited elements, it is to be expected that the dispersion of critical flicker frequencies in repeated measurements will pass through a maximum as log I is increased, whereas the dispersion of critical intensities will be proportional to Im; and that the proportionality factor in the case of different organisms bears no relation to the form or position of the respective curves relating mean critical intensity to flicker frequency. These deductions agree with the experimental findings.  相似文献   

19.
Undoped and Er-doped NaY(WO4)2 disordered single crystals have been grown by the Czochralski technique. The specific heat and thermal conductivity (κ) of these crystals have been characterized from T = 4 K to 700 K and 360 K, respectively. It is shown that κ exhibits anisotropy characteristic of single crystals as well as a κ(T) behavior observed in glasses, with a saturation mean free phonon path of 3.6 Å and 4.5 Å for propagation along a and c crystal axes, respectively. The relative energy positions and irreducible representations of Stark Er3+ levels up to 4G7/2 multiplet have been determined by the combination of experimental low (<10 K) temperature optical absorption and photoluminescence measurements and simulations with a single-electron Hamiltonian including both free-ion and crystal field interactions. Absorption, emission and gain cross sections of the 4I13/24I15/2 laser related transition have been determined at 77 K. The 4I13/2 Er3+ lifetime (τ) was measured in the temperature range of 77–300 K, and was found to change from τ (77K) ≈ 4.5 ms to τ (300K) ≈ 3.5 ms. Laser operation is demonstrated at 77 K and 300 K by resonantly pumping the 4I13/2 multiplet at λ≈1500 nm with a broadband (FWHM≈20 nm) diode laser source perfectly matching the 77 K crystal 4I15/24I13/2 absorption profile. At 77 K as much as 5.5 W of output power were obtained in π-polarized configuration with a slope efficiency versus absorbed pump power of 57%, the free running laser wavelength in air was λ≈1611 nm with the laser output bandwidth of 3.5 nm. The laser emission was tunable over 30.7 nm, from 1590.7 nm to 1621.4 nm, for the same π-polarized configuration.  相似文献   

20.
The epithelial sodium channel is a multimeric protein formed by three homologous subunits: α, β, and γ; each subunit contains only two transmembrane domains. The level of expression of each of the subunits is markedly different in various Na+ absorbing epithelia raising the possibility that channels with different subunit composition can function in vivo. We have examined the functional properties of channels formed by the association of α with β and of α with γ in the Xenopus oocyte expression system using two-microelectrode voltage clamp and patch-clamp techniques. We found that αβ channels differ from αγ channels in the following functional properties: (a) αβ channels expressed larger Na+ than Li+ currents (INa+/ILi+ 1.2) whereas αγ channels expressed smaller Na+ than Li+ currents (INa+/ILi+ 0.55); (b) the Michaelis Menten constants (K m) of activation of current by increasing concentrations of external Na+ and Li+ of αβ channels were larger (K m > 180 mM) than those of αγ channels (K m of 35 and 50 mM, respectively); (c) single channel conductances of αβ channels (5.1 pS for Na+ and 4.2 pS for Li+) were smaller than those of αγ channels (6.5 pS for Na+ and 10.8 pS for Li+); (d) the half-inhibition constant (K i) of amiloride was 20-fold larger for αβ channels than for αγ channels whereas the K i of guanidinium was equal for both αβ and αγ. To identify the domains in the channel subunits involved in amiloride binding, we constructed several chimeras that contained the amino terminus of the γ subunit and the carboxy terminus of the β subunit. A stretch of 15 amino acids, immediately before the second transmembrane domain of the β subunit, was identified as the domain conferring lower amiloride affinity to the αβ channels. We provide evidence for the existence of two distinct binding sites for the amiloride molecule: one for the guanidium moiety and another for the pyrazine ring. At least two subunits α with β or γ contribute to these binding sites. Finally, we show that the most likely stoichiometry of αβ and αγ channels is 1α:1β and 1α:1γ, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号