首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hydroponic experiment was conducted to elucidate the difference in growth and cell ultrastructure between Tibetan wild and cultivated barley genotypes under moderate (150 mM NaCl) and high (300 mM NaCl) salt stress. The growth of three barley genotypes was reduced significantly under salt stress, but the wild barley XZ16 (tolerant) was less affected relative to cultivated barley Yerong (moderate tolerant) and Gairdner (sensitive). Meanwhile, XZ16 had lower Na+ and higher K+ concentrations in leaves than other two genotypes. In terms of photosynthetic and chlorophyll fluorescence parameters, salt stress reduced maximal photochemical efficiency (F v/F m), net photosynthetic rate (Pn), stomatal conductance (Gs), and intracellular CO2 concentration (Ci). XZ16 showed relatively smaller reduction in comparison with the two cultivated barley genotypes. The observation of transmission electron microscopy found that fundamental cell ultrastructure changes happened in both leaves and roots of all barley genotypes under salt NaCl stress, with chloroplasts being most changed. Moreover, obvious difference could be detected among the three genotypes in the damage of cell ultrastructure under salt stress, with XZ16 and Gairdner being least and most affected, respectively. It may be concluded that high salt tolerance in XZ16 is attributed to less Na+ accumulation and K+ reduction in leaves, more slight damage in cell ultrastructure, which in turn caused less influence on chloroplast function and photosynthesis.  相似文献   

2.
The combined effects of inorganic phosphate (Pi) insufficiency and CO2 enrichment on metabolite levels and carbon partitioning were studied using roots of 9-, 13- and 17-day-old barley seedlings (Hordeum vulgare L. cv. Brant). Plants were grown from seed in controlled environment chambers providing 36 ± 1 Pa (ambient) or 100 ± 2 Pa (elevated) CO2 and either 1.0 mM (Pi sufficient) or 0.05 mM (Pi insufficient) Pi. When values were combined for both Pi treatments, plants grown under enhanced CO2 showed increased root dry matter, adenylates (ATP + ADP), glutamine and non- structural carbohydrates other than starch. In contrast with shoots, enhanced CO2 partially reversed the inhibition of root dry matter formation imposed by Pi insufficiency. The Pi-insufficient treatment also increased sucrose, glucose and fructose levels in barley roots. The Pi and CO2 treatments were additive, so that the highest soluble carbohydrate levels were observed in roots of Pi-insufficient plants from the elevated CO2 treatment. Pi limitation decreased dry matter formation, acid-extractable Pi, nitrate, hexose-phosphates, glutamate, glutamine and acid invertase activity of barley roots in plants grown in both ambient and elevated CO2. Adenylate levels in roots were unaffected by the moderate Pi insufficiency described here. Thus, the reduced hexose-phosphate levels of Pi-insufficient roots were not likely to be the result of low adenylate concentrations. The above results suggest that the capacity of barley roots to utilize carbohydrates from the shoot is inadequate under both Pi-insufficient and CO2-enriched treatments. In addition, the Pi and CO2 treatments used here alter the nitrogen metabolism of barley roots. These findings further emphasize the importance of avoiding nutrient stress during CO2 enrichment experiments.  相似文献   

3.
B. R. Ruess  B. M. Eller 《Planta》1985,166(1):57-66
The combination of a chamber for CO2 gas exchange with a potometric measuring arrangement allowed concomitant investigations into CO2 gas exchange, transpiration and water uptake by the roots of whole plants of Senecio medley-woodii, a species which exhibits Crassulacean acid metabolism. The water-uptake rate showed the same daily pattern as malate concentration and osmotic potential. The accumulation of organic acids resulting from nocturnal CO2 fixation enhanced the water-uptake rate from dusk to dawn. During the day the water-uptake rates decreased with decreasing organic-acid concentration. With gradually increasing water stress, CO2 dark fixation of S. medley-woodii was increased as long as water could be taken up by the roots. It was also shown that a reestablished water supply after drought caused a similar increase which in both cases ameliorated the water uptake in order to conserve a positive water balance for as long as possible. This water-uptake pattern shows that Crassulacean acid metabolism is not only a water-saving adaptation but also enhances water uptake and is directly correlated with the amelioration of the plant water status.Abbreviation CAM Crassulacean acid metabolism  相似文献   

4.
This study examines the extent to which the predicted CO2‐protective effects on the inhibition of growth, impairment of photosynthesis and nutrient imbalance caused by saline stress are mediated by an effective adaptation of the endogenous plant hormonal balance. Therefore, sweet pepper plants (Capsicum annuum, cv. Ciclón) were grown at ambient or elevated [CO2] (400 or 800 µmol mol–1) with a nutrient solution containing 0 or 80 mM NaCl. The results show that, under saline conditions, elevated [CO2] increased plant dry weight, leaf area, leaf relative water content and net photosynthesis compared with ambient [CO2], whilst the maximum potential quantum efficiency of photosystem II was not modified. In salt‐stressed plants, elevated [CO2] increased leaf NO3 concentration and reduced Cl concentration. Salinity stress induced ABA accumulation in the leaves but it was reduced in the roots at high [CO2], being correlated with the stomatal response. Under non‐stressed conditions, IAA was dramatically reduced in the roots when high [CO2] was applied, which resulted in greater root DW and root respiration. Additionally, the observed high CK concentration in the roots (especially tZR) could prevent downregulation of photosynthesis at high [CO2], as the N level in the leaves was increased compared with the ambient [CO2], under salt‐stress conditions. These results demonstrate that the hormonal balance was altered by the [CO2], which resulted in significant changes at the growth, gas exchange and nutritional levels.  相似文献   

5.
The effect of varied anaerobic atmospheres on the metabolism of sweet potato (Ipomoea batatas [L.] Lam.) roots was studied. The internal gas atmospheres of storage roots changed rapidly when the roots were submerged under water. O2 and N2 gases disappeared quickly and were replaced by CO2. There were no appreciable differences in gas composition among the four cultivars that were studied. Under different anaerobic conditions, ethanol concentration in the roots was highest in a CO2 environment, followed by submergence and a N2 environment in all the cultivars except one. A positive relationship was found between ethanol production and pyruvate decarboxylase activity from both 100% CO2-treated and 100% N2-treated roots. CO2 atmospheres also resulted in higher pyruvate decarboxylase activity than did N2 atmospheres. Concentrations of CO2 were higher within anaerobic roots than those in the ambient anaerobic atmosphere. The level of pyruvate decarboxylase and ethanol in anaerobic roots was proportional to the ambient CO2 concentration. The measurable activity of pyruvate decarboxylase that was present in the roots was about 100 times less than that of alcohol dehydrogenase. Considering these observations, it is suggested that the rate-limiting enzyme for ethanol biosynthesis in sweet potato storage roots under anoxia is likely to be pyruvate decarboxylase rather than alcohol dehydrogenase.  相似文献   

6.
To determine possible physiological responses to salinity, seedlings of Cereus validus Haworth, a cactus from Salinas Grandes, Argentina, were treated with up to 600 millimolar NaCl for up to 16 days when they were about 9 months old and 100 millimeters tall. Salt stress decreased stem biomass, e.g. it was 19.7 grams for controls and 11.4 grams for plants treated with 400 millimolar NaCl for 14 days. Nocturnal CO2 uptake in these obligate Crassulacean acid metabolism (CAM) plants was inhibited 67% upon treatment with 400 millimolar NaCl for 14 days (controls, 181 millimoles CO2 per square meter), while nocturnal accumulation of malate was inhibited 49% (controls, 230 millimoles malate per square meter). The larger accumulation of malate as compared to uptake of atmospheric CO2 suggests that internal CO2 recycling occurred during the dark period. Such recycling was lower in the controls (~20%) than in the NaCl-treated plants (~50%). The nocturnal increase in malate and titratable acidity depended on the total daily photosynthetically active radiation available; measurements suggest a quantum requirment of 26 photons per malate. As NaCl in the medium was increased to 600 millimolar in daily increments of 50 millimolar, Na and Cl concentrations in the roots increased from about 7 to 100 millimolar, but K concentration in the cell sap remained near 26 millimolar. Concomitantly, concentrations of Na and Cl in the shoots increased from 8 to 17 millimolar and from 1 to 7 millimolar, respectively, while the K concentration increased about 16 to 60 millimolar. In plants maintained for 14 days at 500 millimolar NaCl, the root levels of Na and Cl increased to 260 millimolar, the shoot levels were about 60 millimolar, and the stem bases began to become necrotic. Such Na retention in the roots together with the special possibilities of carbon reutilization given by CAM are apparently survival mechanisms for the temporarily saline conditions experienced in its natural habitat.  相似文献   

7.
Summary Aerobic and anaerobic N2-fixing bacteria developed in the rhizosphere of barley seedlings and exhibited N2ase activity when seedlings were grown in sterilized sand-nutrient cultures containing low levels of combined nitrogen. The source of the N2-fixing bacteria appeared to be the seed. Average daily rates up to 0.9 μmoles C2H4 h−1 g−1 dry root tissue were measured, but the intensity of the activity was affected by moisture levels and concentration of combined N in the rhizosphere. Removal and washing of the roots did not remove the activity, and roots remained active even after surface-sterilization. An unidentified aerobic N2-fixing bacterium was isolated from the rhizoplane of active barley roots. Inoculation of barley seedlings with the aerobic N2-fixing bacterium enhanced N2ase activity of excised roots 10-fold, with average rates of 0.9, 1.1 and 1.3 μmoles h−1 g−1 dry root assayed under pO2 of 0.01, 0.02 and 0.04 atm respectively. The aerobic N2-fixing bacterium also exhibited N2ase activity when inoculated into the rhizosphere of oat, rice and wheat seedlings. Microscopic observations of sterilized live and stained barley roots suggest that the aerobic N2-fixing bacterium is an endophyte which infects root tissue and metamorphoses into vesicle-like structures.  相似文献   

8.
A simple equipment was developed to cultivate young cereal plants under enhanced CO2 concentration. Cultivation system permits growing of about 40 barley seedlings for about 2 to 3 weeks. The system consists of two identical growth chambers (volume about 30 dm3), gas conditioning circuit and measuring circuit with an infra-red CO2 analyser. Capabilities of the whole equipment were tested by growing barley plants under 330 and 1000 cm3 (CO2)m−3 and in combination with high or low nitrate level.  相似文献   

9.
The accumulation of ammonia takes place more rapidly in light than in darkness. The accumulation appears to go on until a steady state is attained. The steady state concentration of ammonia in the sap is about twice as great in light as in darkness. Both effects are possibly due to the fact that the external pH (and hence the concentration of undissociated ammonia) outside is raised by photosynthesis. Certain "permeability constants" have been calculated. These indicate that the rate is proportional to the concentration gradient across the protoplasm of NH4 X which is formed by the interaction of NH3 or NH4OH and HX, an acid elaborated in the protoplasm. The results are interpreted to mean that HX is produced only at the sap-protoplasm interface and that on the average its concentration there is about 7 times as great as at the sea water-protoplasm interface. This ratio of HX at the two surfaces also explains why the concentration of undissociated ammonia in the steady state is about 7 times as great in the sea water as in the sap. The permeability constant P'''''' appears to be greater in the dark. This is possibly associated with an increase in the concentration of HX at both interfaces, the ratio at the two surfaces, however, remaining about the same. The pH of sap has been determined by a new method which avoids the loss of gas (CO2), an important source of error. The results indicate that the pH rises during accumulation but the extent of this rise is smaller than has hitherto been supposed. As in previous experiments, the entering ammonia displaced a practically equivalent amount of potassium from the sap and the sodium concentration remained fairly constant. It seems probable that the pH increase is due to the entrance of small amounts of NH3 or NH4OH in excess of the potassium lost as a base.  相似文献   

10.
Hiatt AJ 《Plant physiology》1967,42(2):294-298
Excised roots of barley (Hordeum vulgare, var. Campana) were incubated in KCl, K2SO4, CaCl2, and NaCl solutions at concentrations of 10−5 to 10−2 n. Changes in substrate solution pH, cell sap pH, and organic acid content of the roots were related to differences in cation and anion absorption. The pH of expressed sap of roots increased when cations were absorbed in excess of anions and decreased when anions were absorbed in excess of cations. The pH of the cell sap shifted in response to imbalances in cation and anion uptake in salt solutions as dilute as 10−5 n. Changes in cell sap pH were detectable within 15 minutes after the roots were placed in 10−3 n K2SO4. Organic acid changes in the roots were proportional to expressed sap pH changes induced by unbalanced ion uptake. Changes in organic acid content in response to differential cation and anion uptake appear to be associated with the low-salt component of ion uptake.  相似文献   

11.
Geisler G 《Plant physiology》1967,42(3):305-307
Barley and pea plants were grown under several regimens of different compositions of soil atmosphere, the O2 concentration varying from 0 to 21% and the CO2 concentration from 0 to 8%. In absence of CO2, the effect of O2 on root length in barley was characterized by equal root lengths within the range of 21 to 7% O2 and a steep decline between 7 and 0%. In peas, while showing the same general response, the decline occurred between 14 and 7% O2. Root numbers of the seminal roots of barley decreased already with reduction in O2 concentration from 21 to 14%. Dry matter production was affected somewhat differently by O2 and CO2 concentration. Dry matter production in barley was reduced at 14% O2 while root length decreased between 7 and 0%. In peas, dry matter production was favored by low CO2 concentrations except where there was no oxygen. At 21% O2, increasing CO2 concentrations did not seem to affect root length up to concentrations of 2% CO2. At 8% CO2, root length was decreased. The inter-active effects of CO2 and O2 are characterized by a reduced susceptibility to CO2 at O2 values below 7%, and a very deleterious effect of 8% CO2 at 7% O2.  相似文献   

12.

Background and aims

Saline and alkali soils severely impact plant growth. Endophyte and plant associations are known to significantly modify plant metabolism. This study reports the effects of a type of endophyte on organic acid (OA) accumulation and ionic balance in rice under Na2CO3 stress.

Methods

Rice seedlings with (E+) and without (E-) endophytic infection were subjected to different levels of Na2CO3 stress (0, 5, 10, 15, and 20 mM) for two weeks. Organic acids and mineral elements in the leaves and roots were determined.

Results

Seedlings with endophytic infection accumulated mainly citrate and fumarate, with some malate and succinate in the leaves. In the roots, accumulation of malate and fumarate was enhanced significantly by endophytic infection, while less citrate and succinate was accumulated under Na2CO3 stress, which suggested that leaves and roots use different mechanisms to control OA metabolism. Endophytes reduced the total Na and Na:K ratios, but increased ST values, the percent changes of other measured nutrients, Chl content, and dry weight per plant under Na2CO3 stress.

Conclusions

Endophytic infection plays a key role in maintaining plant growth by improving nutrient uptake and adjusting OA accumulation under Na2CO3 stress. The application of endophytes can enhance the resistance of rice to salinity.
  相似文献   

13.
We analysed the impact of elevated CO2 on water relations, water use efficiency and photosynthetic gas exchange in barley (Hordeum vulgare L.) under wet and drying soil conditions. Soil moisture was less depleted under elevated compared to ambient [CO2]. Elevated CO2 had no significant effect on the water relations of irrigated plants, except on whole plant hydraulic conductance, which was markedly decreased at elevated compared to ambient CO2 concentrations. The values of relative water content, water potential and osmotic potential were higher under elevated CO2 during the entire drought period. The better water status of water-limited plants grown at elevated CO2 was the result of stomatal control rather than of osmotic adjustment. Despite the low stomatal conductance produced by elevated CO2, net photosynthesis was higher under elevated than ambient CO2 concentrations. With water shortage, photosynthesis was maintained for longer at higher rates under elevated CO2. The reduction of stomatal conductance and therefore transpiration, and the enhancement of carbon assimilation by elevated CO2, increased instantaneous and whole plant water use efficiency in both irrigated and droughted plants. Thus, the metabolism of barley plants grown under elevated CO2 and moderate or mild water deficit conditions is benefited by increased photosynthesis and lower transpiration. The reduction in plant water use results in a marked increase in soil water content which delays the onset and severity of water deficit.  相似文献   

14.
Lactate dehydrogenase (LDH) activity in attached roots of barley and other cereals increased up to 20-fold during several days of severe hypoxia, reaching a maximum of about 2 micromoles per minute per gram fresh weight. In barley, induction of LDH activity was significant at 2.6% O2 and greatest at 0.06%, the lowest O2 concentration tested. Upon return to aerobic conditions, induced LDH activity declined with an apparent half-life of 2 days. The isozyme profile of barley LDH comprised 5 bands, consistent with a tetrameric enzyme with subunits encoded by two different Ldh genes. Changes in staining intensity of the isozymes as a function of O2 level suggested that one Ldh gene was preferentially expressed in severe hypoxia. When tracer [U-14C]glucose was supplied to induced roots under hypoxic conditions, lactate acquired label, but much less than either ethanol or alanine. Most of the [14C] lactate was secreted into the medium, whereas most other labeled anionic products were retained in the root. Neither hypoxic induction of LDH, nor lactate secretion by induced roots, is predicted from the Davies-Roberts hypothesis, which holds that lactate glycolysis ceases soon after the onset of hypoxia due to acidosis brought about by lactate accumulation in the cytoplasm. These results imply a functional significance for LDH beyond that assigned it in this hypothesis.  相似文献   

15.
The responses of Brassica juncea cv. Pusa Bold to elevated CO2 was studied under water stress. Carbon accumulation in leaves, stem and roots was significantly higher at elevated CO2 concentration. The water stress decreased the carbon content in these plant parts and this adverse effect was reduced by CO2 enrichment. On the contrary nitrogen content of leaves, stem and roots was significantly reduced at elevated CO2. Water stress caused reduction in nitrogen content in these plant parts, similar at ambient as well as elevated CO2 concentration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
This study compares photosynthetic and structural features of Dichaea cogniauxiana and Epidendrum secundum leaves and roots. The diurnal titratable acidity fluctuations indicated crassulacean acid metabolism (CAM) in E. secundum leaves, associated with anatomical features like thick cuticle, large and vacuolated cells, and reduced stomata size and frequency. Roots of both species had chloroplasts in their cortical parenchyma. However, neither the roots nor D. cogniauxiana leaves did show tissue sap acidity fluctuations. This indicates C3 metabolism in these organs. This lack of oscillation of organic acids in Epidendrum roots was at odds with a CAM-like 13C ratio, suggesting that in spite of active CO2 fixation in roots during the day, the bulk of carbon is imported from the leaves. Roots of both species showed Fv/Fm, ΔF/Fm′, ETR values similar to reports from other non-foliar photosynthetic organs. Besides reducing root carbon cost, root photosynthesis may also be important by alleviating potential hypoxia, since water-saturated velamen severely impedes the gas exchange between radicular cortex.  相似文献   

17.
Summary In a solution culture experiment with 31 days old barley plants (var. Miura) the influence of NaCl-salinization (80 mM) and KCl addition (5 and 10 mM) on the uptake and turnover of labelled nitrogen (15NH4 15NO3) was studied. Labelled N was applied for 24 h at the end of a 20 days' salinization period. Salinization impaired growth and incorporation of labelled N into the protein fraction paralleled by accumulation of labelle dinorganic N. All salt effects were much more pronounced in the shoots than in the roots.Potassium addition enhanced N uptake (total15N-content) and incorporation into protien, reduced the accumulation of inorganic N and improved the growth of salinized plants.The presented data support the point of view that impairment of protein (enzyme) metabolism is an important aspect of salt stress which is probably induced by the disturbance of the K/Na balance of the tissues under saline conditions.This work was supported by a grant from the Alexander von Humboldt foundation.  相似文献   

18.
19.
Hiatt AJ 《Plant physiology》1970,45(4):411-414
Excised barley roots accumulated 40 to 50% more K+ from 0.04 mm than from 0.06 mm KCl when incubated for 24 hours in KCl solutions containing 0.2 mm CaSO4. This phenomenon was not markedly influenced by the rate of absorption of the counteranion. The presence of Na+ in the treatment solutions decreased total K accumulation but did not alter the K+ concentration at which the accumulation peak occurred. Short interval studies indicated that this phenomenon is easily observable after 4 hours and begins to become apparent within 2 hours. In comparison with barley, accumulation of K+ by excised wheat roots decreased as KCl concentration was increased from 0.02 to 0.06 mm; but K+ accumulation curve for corn roots showed no peaks or depressions in the concentration range of 0.01 to 0.1 mm. A normal hyperbolic curve was noted for the accumulation of Na+ from 0.01 to 1 mm NaCl by barley roots.  相似文献   

20.
To imitate cells which have ceased to grow we have made models in which artificial sap is separated from the external solution by a non-aqueous layer (representing the protoplasm). A stream of CO2 is bubbled through the artificial sap to imitate its production by the living cell. Potassium passes from the external solution through the non-aqueous layer into the artificial sap and there reacts with CO2 to form KHCO3: its rate of entrance depends on the supply of CO2. Hence the increase of volume depends on the supply of CO2 (as is probably true of the living cell). By regulating the supply of CO2 and the osmotic pressure we are able to keep the volume and composition of the artificial sap approximately constant while maintaining a higher concentration of potassium than in the external solution. In these respects the model resembles certain mature cells which have ceased to grow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号