首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氮沉降对土壤线虫群落影响的研究进展   总被引:1,自引:0,他引:1  
综述了主要陆地生态系统(草原、农田和森林)土壤线虫群落对氮沉降增加的响应格局和机制。总体上,氮沉降增加对线虫数量一般无显著影响,但增加了土壤中富集机会主义者(即低营养级的r-策略者)数量,降低了线虫群落成熟度指数(MI),表明氮沉降增加可能会使土壤食物网简化。氮沉降增加主要通过改变土壤微环境(如增加含氮离子浓度、降低土壤pH)直接影响土壤线虫群落,或者改变植物地上地下资源的输入和线虫与其他土壤动物的关系,间接影响线虫群落。最后,根据目前研究现状,指出了当前研究存在的局限性,包括研究时间和空间尺度上以及研究技术手段上的局限。建议综合多个全球环境变化因子,并结合室内试验及分子手段的方法对土壤线虫群落进行研究。  相似文献   

2.
Atmospheric nitrogen deposition increases forest carbon sequestration across broad parts of the Northern Hemisphere. Slower organic matter decomposition and greater soil carbon accumulation could contribute to this increase in carbon sequestration. We investigated the effects of chronic simulated nitrogen deposition on leaf litter and fine root decomposition at four sugar maple (Acer saccharum)-dominated northern hardwood forests. At these sites, we previously observed that nitrogen additions increased soil organic carbon and altered litter chemistry. We conducted a 3-year decomposition study with litter bags. Litter production of leaves and fine roots were combined with decomposition dynamics to estimate how fine roots and leaf litter contribute to soil organic carbon. We found that nitrogen additions marginally stimulated early-stage decomposition of leaf litter, an effect associated with previously documented changes in litter chemistry. In contrast, nitrogen additions inhibited the later stages of fine root decomposition, which is consistent with observed decreases in lignin-degrading enzyme activities with nitrogen additions at these sites. At the ecosystem scale, slower fine root decomposition led to additional root mass retention (g m?2), and this greater retention of root residues was estimated to explain 5–51% of previously documented carbon accumulation in the surface soil due to nitrogen additions. Our results demonstrated that simulated nitrogen deposition created contrasting effects on the decomposition of leaf litter and fine roots. Although previous nitrogen deposition studies have focused on leaf litter, this work suggests that slower fine root decomposition is a major driver of soil organic carbon accumulation under elevated nitrogen deposition.  相似文献   

3.
木本植物对高氮沉降的生理生态响应   总被引:5,自引:0,他引:5  
从4个方面综述了木本植物对氮沉降增加的生理生态响应研究进展。(1)氮沉降增加引起木本植物组织氮浓度增加,从而改变其体内的氮代谢:(2)氮沉降影响植物的光合作用速率及与光合作用相关的含氮组分,一定范围内氮沉降会增加光合速率、光合色素和Rubisco含量:(3)氮沉降增加将导致植物的呼吸作用增强:(4)氮沉降增加不利于植物的抗逆性,导致植物的抗寒力和抗病虫害的能力下降。  相似文献   

4.
In coastal zones where prevailing winds are onshore, seagrasses are regularly deposited at the shoreline, often forming large accumulations. We have compared the rates of output of dry matter, organic carbon, and nitrogen for turtlegrass (Thalassia testudinum) when it decays at the shoreline or continuously submerged nearby. Output rates were either delayed (by 30 days or more) or were significantly slower for decay under submerged conditions.  相似文献   

5.
为探讨氮沉降对典型阔叶红松(Pinus koraiensis)林的影响,从2008年6月~2010年8月进行了人工模拟氮沉降实验,实验分为对照、低N、中N、高N4个处理,每个处理3个重复。所施氮肥为CO(NH2)2,以溶液的形式喷施,4个处理浓度分别为0、30、60、120 kg·hm-2·a-1。在氮沉降进行1年后,采集各处理0~20、20~40和40~60 cm的土壤样品,测定其土壤有机C、全N、碱解N和速效P、速效K。结果表明:相同处理下,有机C和全N含量随土层的加深均逐渐减少。总体上低、中N处理显著增加了土壤有机C、碱解N和速效K含量,中、高N处理显著降低了土壤速效P含量(P<0.05),而对全N含量影响不显著(P>0.05)。土壤有机C与土壤全N、碱解N、速效P、速效K之间存在极显著正相关关系(P<0.001)。有机C和土壤养分对氮沉降的响应说明氮沉降在短期内可能影响阔叶红松林土壤碳库积累和土壤肥力水平。  相似文献   

6.
为了解菌根化处理的灌木铁线莲(Clematis fruticosa)苗木根系形态及养分承载对氮沉降的应激响应,以1年生盆栽灌木铁线莲为对象,分别采用单接种和混合接种,即:单接种根内根孢囊霉(Rhizophagus intraradices,以下简称+R),单接种摩西斗管囊霉(Funneliformis mosseae,以下简称+F);混合接菌(上述2菌种菌剂按体积1∶1混合,以下简称+RF)的菌根苗。以非菌根苗(未接菌,以下简称-M)为对照。氮沉降处理设置4个梯度(不施氮(0N,0 g·m-2·a-1)、低氮(LN,3 g·m-2·a-1)、中氮(MN,6 g·m-2·a-1)、高氮(HN,9 g·m-2·a-1)),1年后测定各处理细根形态(直径≤0.5 mm的总根长、总表面积、总体积、根尖数量)、菌根侵染率、土壤孢子密度及根、茎、叶各器官的养分(碳、氮、磷)含量等指标。①在+R和+RF处理下,LN处理的苗木菌根侵染率和孢子密度达到最大,且LN处理的苗木菌根侵染率显著高于HN处理;而+F处理的苗木菌根侵染率随氮沉降递增无显著差异。②0N处理下,+F和+R处理的灌木铁线莲苗木细根(直径≤0.5 mm)的总根长、总表面积、总体积和根尖数量均显著高于-M处理。然而,+F和+R处理的灌木铁线莲苗木上述根系形态指标随着氮沉降量的增加均呈下降的趋势。③+F和+R处理下,苗木养分承载量随氮沉降量增加呈增加的趋势。氮沉降处理下,接菌处理的苗木碳、氮、磷养分含量显著高于-M处理,其中+F处理下苗木碳氮磷养分含量最高。④直径≤0.5 mm细根形态指标与养分含量指标均呈正相关关系。综上,接菌处理可改变灌木铁线莲苗木细根形态对氮沉降的响应规律,接种摩西斗管囊霉有效增强苗木对氮沉降的适应能力,提高了高氮沉降处理下苗木的养分承载量。  相似文献   

7.
Dinoflagellates are important contributors to the marine phytoplankton and global carbon fixation, but are also infamous for their ability to form the spectacular harmful algal blooms called red tides. While blooms are often associated with high available nitrogen, there are instances where they are observed in oligotrophic environments. In order to maintain their massive population in conditions of nitrogen limitation, dinoflagellates must have evolved efficient adaptive mechanisms. Here we report the physiological responses to nitrogen deprivation in Lingulodinium polyedrum. We find that this species reacts to nitrogen stress, as do most plants and microalgae, by stopping cell growth and diminishing levels of internal nitrogen, in particular in the form of protein and chlorophyll. Photosynthesis is maintained at high levels for roughly a week following nitrate depletion, resulting in accumulated photosynthetic products in the form of starch. During the second week, photosynthesis rates decrease due to a reduction in the number of chloroplasts and the accumulation of neutral lipid droplets. Surprisingly, the starch granules and lipid droplets are seen to accumulate at opposite poles of the cell. Lastly, we observe that cells acclimated to nitrogen-depleted conditions resume normal growth after addition of inorganic nitrogen, but are able to maintain high cell densities far longer than cells grown continuously in nitrogen-replete conditions.  相似文献   

8.
利用雨量器收集降雨样品的方法,研究了帽儿山地区大气氮湿沉降的浓度、沉降量及其动态变化规律。研究结果表明:2011年随降雨输入到该地区的大气氮沉降量为19.16 kg·hm-2,其中,NH+4-N、NO-3-N和溶解有机氮(DON)输入量分别占湿沉降量的52%、26%和22%,NH+4-N/NO-3-N沉降量接近2.0。降雨中NH+4-N对当地大气氮湿沉降输入量的贡献率最大,其平均浓度为1.59 mg·L-1。氮湿沉降浓度存在明显的季节差异,以5和9月氮浓度最高,7月最低。该区NH+4-N、NO-3-N和总氮(TN)湿沉降输入量与降雨量均存在极显著正相关,决定系数分别为0.65、0.63和0.76,而DON输入量与降雨量相关性交差(P>0.05),其决定系数为0.24。  相似文献   

9.
Acid deposition, a direct effect of gaseous air pollutants, is causing widespread damage to terrestrial and aquatic ecosystems. Further, these pollutants are responsible for the corrosion of building materials and cultural objects, as well as having an impact on human health. In Cuba, main atmospheric deposition of nitrogen compounds varies from approximately 12.0 to 65.0 kg N ha(-1) year(-1) in rural areas. Ammonia and ammonium are the most important elements in Cuba's tropical conditions.  相似文献   

10.
Experimental studies have shown that deposition of reactive nitrogen is an important driver of plant community change, however, most of these experiments are of short duration with unrealistic treatments, and conducted in regions with elevated ambient deposition. Studies of spatial gradients of pollution can complement experimental data and indicate whether the potential impacts demonstrated by experiments are actually occurring in the ‘real world’. However, targeted surveys exist for only a very few habitats and are not readily comparable. In a coordinated campaign, we determined the species richness and plant community composition of five widespread, semi-natural habitats across Great Britain in sites stratified along gradients of climate and pollution, and related these ecological parameters to major drivers of biodiversity, including climate, pollution deposition, and local edaphic factors. In every habitat, we found reduced species richness and changed species composition associated with higher nitrogen deposition, with remarkable consistency in relative species loss across ecosystem types. Whereas the diversity of mosses, lichens, forbs, and graminoids declines with N deposition in different habitats, the cover of graminoids generally increases. Considered alongside previous experimental studies and survey work, our results provide a compelling argument that nitrogen deposition is a widespread and pervasive threat to terrestrial ecosystems.  相似文献   

11.
为探究氮沉降和接种菌根真菌对长白落叶松苗木根系构型和根际土壤酶活性的影响,以1年生长白落叶松(Larix olgensis)的盆栽菌根苗(简称+M,混合接种8种外生菌根真菌)和非菌根苗(简称-M,未接种处理)为研究对象,设置4个氮沉降处理(不施氮(0N,0 kg·N·hm^-1·yr^-1)、低氮(LN,15 kg·N·hm^-1·yr^-1)、中氮(MN,30 kg·N·hm^-1·a^-1)和高氮(HN,60 kg·N·hm^-1·a^-1)),测定直径0~0.5 mm根系的总根长、总表面积、总体积和根尖数等根系形态指标,对比分析氮沉降和接种菌根真菌处理对苗木根际土壤酶(β-1,4葡萄糖苷酶(BG)、亮氨酸氨基肽酶(LAP)、β-1,4-N-乙酰-氨基葡糖氨糖苷酶(NAG)、酸性磷酸酶(ACP)和碱性磷酸酶(ALP))活性的影响。结果表明:①长白落叶松苗木直径0~0.5 mm根系的总根长、总表面积、总体积和根尖数均随氮浓度的递增呈下降的趋势;在0N、LN和MN处理下,-M处理的根系形态指标均高于+M处理。②随氮浓度增加,+M和-M处理苗木根际土壤中BG、LAP、ACP和ALP活性均呈先增加后下降的趋势,而NAG活性呈下降的趋势。③+M和-M处理下,长白落叶松直径0~0.5 mm根系的形态指标与根际土壤BG活性均呈显著负相关关系(P<0.05);除根尖数外,其它根系形态指标与NAG活性相关性均为正相关(P<0.05)。综上所述,苗木菌根化处理削弱了氮沉降对落叶松苗木根系构型的影响;而低氮处理下,+M处理对苗木根际土壤酶的活化程度高于-M处理。  相似文献   

12.
氮沉降增加对森林凋落物分解酶活性的影响   总被引:7,自引:0,他引:7  
氮沉降增加对森林凋落物分解酶产生的影响在世界范围受到关注。综述了凋落物分解酶的种类、影响酶的因素、酶的生态学意义和土壤酶研究技术的研究发展趋势。根据森林凋落物底物性质的不同,将凋落物分解酶分为纤维素分解酶类、木质素分解酶类、蛋白水解酶类和磷酸酶类。目前普遍认为,氮沉降增加,磷酸酶类活性随之增加,其它三类酶活性未呈现规律性变化。此外,还对氮沉降增加与土壤酶之间关系的研究前景进行了探讨。  相似文献   

13.
Ecosystems - Lichens are the key to nutrient cycling and trophic networks in many terrestrial ecosystems and are good bioindicators of air pollution, including nitrogen (N) deposition. Experimental...  相似文献   

14.
盆栽条件下,采用单接种Suillus bovines(以下简称SB)和混合接种(Suillus luteus、Suillus grevillea、Tricholoma fulvum、Boletinus grisellus、Suillus bovinus、Leucocortinarius bulbiger、Rhizopogon luteolus、Pisolithus tinctorius 8个菌种的等量混合菌剂接种,以下简称HJ)方法对樟子松(Pinus sylvestris var.mongolica)2个月幼苗进行接种处理,幼苗生长6个月形成菌根后对樟子松幼苗进行模拟氮沉降实验,5个月后通过测定幼苗生长指标、根系形态结构和菌根侵染率,旨在探讨模拟氮沉降对樟子松不同接种处理幼苗生长的影响。结果表明:①随着氮浓度的增加,单接种乳牛肝(SB)和混合接种(HJ)菌根侵染率均呈下降趋势,且氮沉降对SB处理的菌根侵染率影响更显著。②接种显著促进幼苗地上和地下生物量积累,且混合接菌效果更好;同一接菌处理中,氮浓度增加对地上生物量的积累有抑制作用;接种和氮浓度对地径和地上生物量有显著交互作用,但对苗高和地下生物量无交互作用。③HJ处理中不施氮(CKN)和1倍氮浓度(CN)较不接菌(CK)和SB处理显著促进幼苗根系的平均直径、总根长和总表面积;氮浓度增加显著促进CK和SB处理的幼苗根系平均直径、总根长和总表面积,但是对HJ处理的根系各形态结构指标均产生抑制作用。接种和氮浓度以及两者的交互作用均极显著影响幼苗根系形态结构。  相似文献   

15.
Abstract: We studied permanent plots in deciduous forests in two provinces of South Sweden, Skåne (127 plots) and Småland (116 plots). Vegetation data were sampled in 1983 and 1993 and used to calculate weighted averages of Ellenberg indicator values for light, reaction (pH) and nitrogen. Soil samples were collected from all plots in 1993 for determination of pH, organic matter content and potential net nitrogen mineralization (minN). Data on minN were also available for 66 plots in Skåne from 1983. Nitrogen deposition is considerably higher in Skåne than in Småland. The same holds true for total minN, minNH4+, minNO3--, and the proportion of total minN due to nitrate (nitrification ratio). According to the comparison of average Ellenberg indicator values between 1983 and 1993, the stands had become darker (not in the heavily managed plots), more acid and nitrogen rich, except at the most acid sites where only minor changes could be observed. The nitrification ratio was significantly higher in 1993 than in 1983. Mean soil nitrification ratios were determined for the most common species in both regions. The means were higher in Skåne than in Småland. It is likely that nitrogen deposition causes an increase in nitrification rate and nitrification ratio. This ratio is a significant determinant of the species composition in deciduous forests.  相似文献   

16.
赵喆  金则新 《植物研究》2020,40(1):41-49
以一年生夏蜡梅(Sinocalycanthus chinensis)幼苗为研究对象,设置4种氮水平:对照(CK,0 gN·m-2·a-1)、低氮(N1,2 gN·m-2·a-1)、中氮(N2,8 gN·m-2·a-1)、高氮(N3,32 gN·m-2·a-1),处理1年后,测定不同氮沉降水平下夏蜡梅幼苗生长指标、生物量分配以及非结构性碳水化合物的差异,探讨夏蜡梅幼苗对氮沉降的响应机制。结果表明:随着氮浓度的增大,夏蜡梅幼苗的株高、基径呈现先升高后降低的趋势,它们均以中氮处理最高。随着氮浓度的升高,夏蜡梅幼苗的叶、冠层生物量呈现出逐渐升高的趋势,而茎、根、总生物量、根生物量比和根冠比则表现出先升高后降低的趋势。叶生物量比随着氮浓度的升高呈现先降低后升高的趋势。叶平均周长、叶平均长度、叶平均面积均以中氮处理最大;叶宽长比以高氮处理最高;中氮、高氮处理的比叶面积明显低于对照。叶中的淀粉、非结构性碳水化合物(NSC)含量均以中氮处理最高;茎中的淀粉、NSC含量以高氮处理最低。总之,不同浓度氮沉降均促进了夏蜡梅的生长,中氮处理促进作用最明显,对其他生长和生理指标也产生了一定的影响。  相似文献   

17.
Ecosystem acidification and eutrophication resulting from increased deposition of dissolved inorganic nitrogen (DIN) are issues of increasing global concern. Consequently, costly policy decisions are being implemented to decrease nitrogen oxide (NO x ) emissions. Although declining DIN deposition along with rapid declines of DIN in surface waters have been reported in parts of Europe, the same observation is just emerging in North America. Here we find a significant decline in bulk deposition NO3 during the later part of a 28-year record in southcentral Ontario, Canada. Despite high N retention and substantial inter-annual variability in the long-term record due to periods of drought, we find significant declines in annual NO3 concentrations and export at six out of 11 streams that drain upland-dominated catchments. In contrast, five streams draining primarily wetland-dominated catchments with lower levels of NO3 show no decreasing trend in NO3 concentration or export. The rapid response in stream NO3 to declining atmospheric inputs was observed at sites with historically moderate inputs of DIN (~870 mg m−2 y−1) in bulk deposition. Topographic features such as slope, and related catchment features including wetland cover, appear to influence which catchments will respond positively to declining DIN deposition. These findings force us to revise our original conceptualization of the N saturation status of these catchments.  相似文献   

18.
Zheng  Mianhai  Zhang  Wei  Luo  Yiqi  Wan  Shiqiang  Fu  Shenglei  Wang  Senhao  Liu  Nan  Ye  Qing  Yan  Junhua  Zou  Bi  Fang  Chengliang  Ju  Yuxi  Ha  Denglong  Zhu  Liwei  Mo  Jiangming 《Ecosystems》2019,22(5):955-967
Ecosystems - Asymbiotic nitrogen (N) fixation (ANF) is an important source of N in pristine forests and is predicted to decrease with N deposition. Previous studies revealing N fixation in response...  相似文献   

19.
The response of decomposition of litter for the dominant tree species in disturbed (pine), rehabilitated (pine and broadleaf mixed) and mature (monsoon evergreen broadleaf) forests in subtropical China to simulated N deposition was studied to address the following hypothesis: (1) litter decomposition is faster in mature forest (high soil N availability) than in rehabilitated/disturbed forests (low soil N availability); (2) litter decomposition is stimulated by N addition in rehabilitated and disturbed forests due to their low soil N availability; (3) N addition has little effect on litter decomposition in mature forest due to its high soil N availability. The litterbag method (a total of 2880 litterbags) and N treatments: Control-no N addition, Low-N: −5 g N m−2 y−1, Medium-N: −10 g N m−2 y−1, and High-N: −15 g N m−2 y−1, were employed to evaluate decomposition. Results indicated that mature forest, which has likely been N saturated due to both long-term high N deposition in the region and the age of the ecosystem, had the highest litter decomposition rate, and exhibited no significant positive and even some negative response to nitrogen additions. However, both disturbed and rehabilitated forests, which are still N limited due to previous land use history, exhibited slower litter decomposition rates with significant positive effects from nitrogen additions. These results suggest that litter decomposition and its responses to N addition in subtropical forests of China vary depending on the nitrogen status of the ecosystem.  相似文献   

20.
The environmental changes arising from nitrogen (N) deposition and precipitation influence soil ecological processes in forest ecosystems. However, the corresponding effects of environmental changes on soil biota are poorly known. Soil nematodes are the important bioindicator of soil environmental change, and their responses play a key role in the feedbacks of terrestrial ecosystems to climate change. Therefore, to explore the responsive mechanisms of soil biota to N deposition and precipitation, soil nematode communities were studied after 3 years of environmental changes by water and/or N addition in a temperate forest of Changbai Mountain, Northeast China. The results showed that water combined with N addition treatment decreased the total nematode abundance in the organic horizon (O), while the opposite trend was found in the mineral horizon (A). Significant reductions in the abundances of fungivores, plant-parasites and omnivores-predators were also found in the water combined with N addition treatment. The significant effect of water interacted with N on the total nematode abundance and trophic groups indicated that the impacts of N on soil nematode communities were mediated by water availability. The synergistic effect of precipitation and N deposition on soil nematode communities was stronger than each effect alone. Structural equation modeling suggested water and N additions had direct effects on soil nematode communities. The feedback of soil nematodes to water and nitrogen addition was highly sensitive and our results indicate that minimal variations in soil properties such as those caused by climate changes can lead to severe changes in soil nematode communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号