首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The electrophoretic mobilities of low density lipoprotein (LDL) and six pure proteins in a 0.5% agarose gel have been compared to literature electrophoretic mobility values determined by the Tiselius moving boundary method. There is a strong correlation (r = 0.99) between the electrophoretic mobilities determined by the two techniques. The electrophoretic behavior of charged particles smaller than very low density lipoproteins (VLDL) is not markedly perturbed by a 0.5% agarose matrix, and variations in mobility primarily reflect differences in particle valence and density of surface charge. Application of electrokinetic theory to derive protein and lipoprotein net charges from the electrophoretic mobilities in agarose yields a quantitative delineation of lipoprotein electrophoretic migration patterns wherein the beta mobility region comprises a surface potential range of -4.5 to -7.0 mV; the pre-beta region a range of -7.0 to -10.5 mV; the alpha mobility region a range of -10.5 to -12.5 mV and the serum albumin region a range of -12.5 to -14.0 mV. Because protein conformation and charge are critical in metabolic regulation, the agarose gel electrophoresis technique provides a valuable analytical tool that should help to elucidate further details of the structure-function relationships of serum lipoprotein particles.  相似文献   

2.
In an effort to model the interaction of lipid-based DNA delivery systems with anionic surfaces, such as a cell membrane, we have utilized microelectrophoresis to characterize how electrokinetic measurements can provide information on surface charge and binding characteristics. We have established that cationic lipids, specifically N-N-dioleoyl-N,N-dimethylammonium chloride (DODAC), incorporated into liposomes prepared with 1, 2-dioleoyl-i-glycero-3-phosphoethanolamine (DOPE) or 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) at 50 mol%, change the inherent electrophoretic mobility of anionic latex polystyrene beads. Self-assembling lipid-DNA particles (LDPs), prepared at various cationic lipid to negative DNA phosphate charge ratios, effected no changes in bead mobility when the LDP charge ratio (+/-) was equal to or less than 1. Increasing the LDP concentration in a solution of 0.1% (w/v) anionic beads resulted in a charge reversal effect when a net charge of LDP to total bead charge ratio (+/-) of 1:1 was observed. LDP formulations, utilizing either DOPE or DOPC, showed similar titration profiles with a charge reversal observed at a 1:1 net LDP to bead charge ratio (+/-). It was confirmed through centrifugation studies that the DNA in the LDP was associated with the anionic latex beads through electrostatic interactions. LDP binding, rather than the binding of dissociated cationic lipids, resulted in the observed electrophoretic mobility changes of the anionic latex beads.  相似文献   

3.
The specific rotation of egg albumin, gliadin, and gelatin (40°C.) is discussed in connection with available data on (a) mobility, (b) titration curve, and (c) osmotic pressure. It seems likely that the change in specific rotation with pH of protein solutions is proportional to the change in net charge.  相似文献   

4.
The cell surface reactivity of the cyanobacterium Calothrix sp. strain KC97, an isolate from the Krisuvik hot spring, Iceland, was investigated in terms of its proton binding behavior and charge characteristics by using acid-base titrations, electrophoretic mobility analysis, and transmission electron microscopy. Analysis of titration data with the linear programming optimization method showed that intact filaments were dominated by surface proton binding sites inferred to be carboxyl groups (acid dissociation constants [pKa] between 5.0 and 6.2) and amine groups (mean pKa of 8.9). Sheath material isolated by using lysozyme and sodium dodecyl sulfate generated pKa spectra similarly dominated by carboxyls (pKa of 4.6 to 6.1) and amines (pKa of 8.1 to 9.2). In both intact filaments and isolated sheath material, the lower ligand concentrations at mid-pKa values were ascribed to phosphoryl groups. Whole filaments and isolated sheath material displayed total reactive-site densities of 80.3 × 10−5 and 12.3 × 10−5 mol/g (dry mass) of cyanobacteria, respectively, implying that much of the surface reactivity of this microorganism is located on the cell wall and not the sheath. This is corroborated by electrophoretic mobility measurements that showed that the sheath has a net neutral charge at mid-pHs. In contrast, unsheathed cells exhibited a stronger negative-charge characteristic. Additionally, transmission electron microscopy analysis of ultrathin sections stained with heavy metals further demonstrated that most of the reactive binding sites are located upon the cell wall. Thus, the cell surface reactivity of Calothrix sp. strain KC97 can be described as a dual layer composed of a highly reactive cell wall enclosed within a poorly reactive sheath.  相似文献   

5.
Summary The surface charge of isolated rat dorsal root ganglion neurones was studied by microelectrophoresis technique. The increase of Ca concentration caused greater reduction of the electrophoretic mobility compared to that produced by an equivalent amount of divalent organic cations, dimethonium or hexamethonium. No charge reversal for Ca concentrations up to 80 mM was observed. These data fit the suggestion that two anion groups of the outer membrane surface can bind one Ca ion with apparent binding constant of about 50 M–1. In solutions of low pH the electrophoretic mobility of cells decreased corresponding to titration of acidic groups with apparent pK=4.2. Trypsin treatment in mild conditions markedly reduced the surface charge: however, neuraminidase and hyaluronidase did not change it. N-bromosuccinimide (a specific reagent for carboxylic groups of proteins) decreased the electrophoretic mobility about 60%. However, no increase of the surface charge after the action of specific reagents for amino groups (2,4,6-trinitrobenzenesulfonic acid and maleic anhydride) was observed. It was shown that the surface charge depends also on the intracellular metabolism. If 1 mM dibutyryl cAMP or theophilline was added to the culture medium (thus, raising the concentration of cAMP inside the cell) the surface charge increased. This effect developed slowly and reached its maximum on the third day of incubation. Treatment of cells by 5 mM tolbutamide (an inhibitor of some protein kinases) did not change cell mobility. Addition of 5 mM N-ethylmaleimide (an inhibitor of adenylate cyclase) to the culture medium produced some decrease of the surface charge. On the basis of data obtained it is suggested that the charge of the outer membrane surface of neurones studied is mainly determined by carboxylic groups of membrane proteins, and changes in intracellular cAMP concentration influence the synthesis and reconstruction of these membrane components.  相似文献   

6.
1. By comparison of electrophoretic mobilities of two different charged particles under the same conditions the net elementary electrostatic charge of one particle could be calculated when the charge of the other is known. 2. The electrophoretic mobility of human thyroxine - binding globulin does not depend upon the concentration of Tris - HCl buffer in the range 0.05 to 0.20 molar. The value of this mobility is 0.078 and 0.083 cm2 vol(-1) hour(-1) at pH 7.0 and 8.6, respectively. 3. The net elementary electrostatic charge of the human thyroxine - binding globulin appears to be approximately 22 negative elementary electrostatic units in mild alkaline solutions.  相似文献   

7.
Fuerst PA  Ferrell RE 《Genetics》1980,94(1):185-201
The stepwise mutation model of Ohta and Kimura (1973) was proposed to explain patterns of genetic variability revealed by means of electrophoresis. The assumption that electrophoretic mobility was principally determined by unit changes in net molecular charge has been criticized by Johnson (1974, 1977). This assumption has been tested directly using hemoglobin. Twenty-seven human hemoglobin variants with known amino acid substitutions, and 26 nonhuman hemoglobins with known sequences were studied by starch gel electrophoresis. Of these hemoglobins, 60 to 70% had electrophoretic mobilities that could be predicted solely on the basis of net charge calculated from the amino acid composition alone, ignoring tertiary structure. Only four hemoglobins showed a mobility that was clearly different from an expected mobility calculated using only the net charge of the molecule. For the remaining 30% of hemoglobins studied, mobility was determined by a combination of net charge and other unidentified components, probably reflecting changes in ionization of some amino acid residues as a result of small alterations in tertiary structure due to the amino acid substitution in the variant. For the nonhuman hemoglobins, the deviation of a sample from its expected mobility increased with increasing amino acid divergence from human hemoglobin A.-It is concluded that the net electrostatic charge of a molecule is the principal determinant of electrophoretic mobility under the conditions studied. However, because of the significant deviation from strict stepwise mobility detected for 30 to 40% of the variants studied, it is further concluded that the infinite-allele model of Kimura and Crow (1964) or a "mixed model" such as that proposed by Li (1976) may be more appropriate than the stepwise mutation model for the analysis of much of the available electrophoretic data from natural populations.  相似文献   

8.
Circulating erythrocytes from rats were examined up to 30 weeks post whole-body exposures of 1.0 R for alterations in the expression of net negative surface charge as measured by whole-cell microelectrophoresis in saline sorbitol. Erythrocyte electrophoretic mobility was determined in an apparatus composed of a horizontal transilluminated cylindrical chamber, equipped with a reversible, blacked platinum electrode, immersed in a water bath maintained at 25.0±0.1°C (Rank Brothers). In two separate experiments, recurrent decreases in the expression of net negative surface charge occurred at 10, 17, and 30 weeks post-irradiation. At these times distribution analyses of recorded erythrocyte electrophoretic mobility (EEPM) values revealed a skewing of the normally distributed EEPM population values to lower EEPM. Total sialic acid content released from hydrolyzed erythrocyte membrane preparations revealed no significant differences between erythrocytes from sham and irradiated animals. In vivo post-irradiation labeling of erythrocytes with diisopropyl-[32P] phosphorofluoridate at 4 and 33 weeks (separate experiments) indicated only a minor abbreviated erythrocyte life span at 33 weeks. Therefore, effects from low dose (1.0 R) whole-body irradiation would appear to include a recurrent defect in the expression of the net negative surface charge.  相似文献   

9.
Computation of the electrophoretic mobility of proteins.   总被引:1,自引:1,他引:0       下载免费PDF全文
A scheme is presented for computing the electrophoretic mobility of proteins in free solution, accounting for the details of the protein shape and charge distribution. The method of Teubner is implemented using a boundary integral formulation within which the velocity distribution, the equilibrium electrical potential around the molecule, and the potential distribution due to the applied field are solved for numerically using the boundary element method. Good agreement of the numerical result is obtained for spheres with the corresponding semi-analytical specialization of Henry's analysis. For protein systems, the method is applied to lysozyme and ribonuclease A. In both cases, the predicted mobility tensors are fairly isotropic, with the resulting scalar mobilities being significantly smaller than for spheres of equal volume and net charge. Comparisons with previously published experimental results for ribonuclease show agreement to be excellent in the presence of a net charge, but poorer at the point of zero charge. The approach may be useful for evaluating approximate methods for estimating protein electrophoretic mobilities and for using electrophoretic measurements to obtain insight into charge distributions on proteins.  相似文献   

10.
The cell surface reactivity of the cyanobacterium Calothrix sp. strain KC97, an isolate from the Krisuvik hot spring, Iceland, was investigated in terms of its proton binding behavior and charge characteristics by using acid-base titrations, electrophoretic mobility analysis, and transmission electron microscopy. Analysis of titration data with the linear programming optimization method showed that intact filaments were dominated by surface proton binding sites inferred to be carboxyl groups (acid dissociation constants [pK(a)] between 5.0 and 6.2) and amine groups (mean pK(a) of 8.9). Sheath material isolated by using lysozyme and sodium dodecyl sulfate generated pK(a) spectra similarly dominated by carboxyls (pK(a) of 4.6 to 6.1) and amines (pK(a) of 8.1 to 9.2). In both intact filaments and isolated sheath material, the lower ligand concentrations at mid-pK(a) values were ascribed to phosphoryl groups. Whole filaments and isolated sheath material displayed total reactive-site densities of 80.3 x 10(-5) and 12.3 x 10(-5) mol/g (dry mass) of cyanobacteria, respectively, implying that much of the surface reactivity of this microorganism is located on the cell wall and not the sheath. This is corroborated by electrophoretic mobility measurements that showed that the sheath has a net neutral charge at mid-pHs. In contrast, unsheathed cells exhibited a stronger negative-charge characteristic. Additionally, transmission electron microscopy analysis of ultrathin sections stained with heavy metals further demonstrated that most of the reactive binding sites are located upon the cell wall. Thus, the cell surface reactivity of Calothrix sp. strain KC97 can be described as a dual layer composed of a highly reactive cell wall enclosed within a poorly reactive sheath.  相似文献   

11.
Some biophysical properties of a (Na+, K+)-ATPase preparation from guinea-pig kidney have been analysed. The recently developed technique of laser Doppler spectroscopy was applied to measure particle mobility under electrophoretic conditions. The following results were obtained: 1. magnesium ions at pH 7.3 decrease the mobility of the ATPase containing vesicles by binding to negatively charged surface groups. At pH 3.3 the competitive binding of protons causes a shift of the mobility vs. [Mg2+] curve to higher values of [Mg2+], 2. binding of ATP at pH 7.3 (Kd = 0.9 X 10(-4) M for (mM 1 NaCl, 0.2 KCl, 0.1 MgCl2, 0.1 Tris) was measured as an increase in particle mobility depending also on [Mg2+]. At pH 3.3 also unspecific ATP-binding occurred, 3. ITP and GTP had the same Kd value as ATP; ADP a slightly lower one (Kd = 1.2 X 10(-4) M). Tris-H3PO4 (Kd = 2.6 X 10(-4) M) was also able to increase particle mobility, but only at higher concentrations and not to the same extent as ATP; AMP induced only very small changes, 4. from the mobility-pH curve an isoelectric point of 4.1 is derived (buffer: 1 mM NaCl, 0.2 mM KCl, 0.1 mM MgCl2, 0.1 mM Tris). In the presence of 0.9 mM ATP the isoelectric point is shifted to 3.2. As the electrophoretic mobility is directly proportional to the net charge of the vesicles, the results may be interpreted as changes in surface charge density, originating from both a conformational change of the ATPase polypeptide and a decrease in vesicle size.  相似文献   

12.
The feasibility of employing classical electrophoresis theory to determine the net charge (valence) of proteins by capillary zone electrophoresis is illustrated in this paper. An outline of a procedure to facilitate the interpretation of mobility measurements is demonstrated by its application to a published mobility measurement for Staphylococcal nuclease at pH 8.9 that had been obtained by capillary zone electrophoresis. The significantly higher valence of +7.5 (cf. 5.6 from the same series of measurements) that has been reported on the basis of a "charge ladder" approach for charge determination signifies the likelihood that the latter generic approach may be prone to error arising from nonconformity of the experimental system with an inherent assumption that chemical modification or mutation of amino acid residues has no effect on the overall three-dimensional size and shape of the protein.  相似文献   

13.
A pH decrease in chloroplast suspension in media of low salt concentration was observed when a salt was added at pH values higher than 4.4, while at lower pH values a pH increase was observed. The salt-induced pH changes depended on the valence and concentration of cations of added salts at neutral pH values (higher than 4.4) and on those of anions at acidic pH values (lower than 4.4). The order of effectiveness was trivalent > divalent > monovalent. The pH value change by salt addition was affected by the presence of ionic detergents depending on the sign of their charges. These characteristics agreed with those expected from the Gouy-Chapman theory on diffuse electrical double layers. The results were interpreted in terms of the changes in surface potential, surface pH and the ionization of surface groups which result in the release (or binding) of H+ to (or from) the outer medium.The analysis of the data of KCl-induced pH change suggests that the change in the surface charge density of thylakoid membranes depends mainly on the ionization of carboxyl groups, which is determined by the surface pH. When the carboxyl groups are fully dissociated, the surface charge density reaches ?1.0 ± 0.1 · 10?3 elementary charge/square Å.Dependence of the estimated surface potential on the bulk pH was similar to that of electrophoretic mobility of thylakoid membrane vesicles.  相似文献   

14.
F Westley  G Kaldor 《Biopolymers》1966,4(2):205-213
The axial ratios (a/b) of native and 60 min. ultraviolet-irradiated myosin A molecules were calculated from previously reported sedimentation and diffusion data; values found were a/b = 74, a = 1880 A., and b = 26 A. for native myosin A; a/b = 104, a = 3280 A., and b = 32 A. for 60 min. ultraviolet-irradiated myosin A. Electrophoretic mobilities gave identical values of 3.2 (±0.1) × 10?5 cm.2/v.-sec. for both native and 60 min. ultraviolet-irradiated myosin A. From the prior sedimentation and diffusion data, together with newly obtained electrophoretic data, the net charge Z and the charge density σ of native and ultraviolet-irradiated myosin A molecules were calculated from Henry's equation. The following results were obtained: for native myosin A, Z = 160 negative charges per molecule and σ = 22 coulombs/cm.2; for ultraviolet-irradiated myosin A, Z = 312 negative charges per molecule and σ = 20 coulombs/cm.2. The results of this study provide an experimental demonstration that, the electrophoretic mobility of charged solute particles is dependent upon the particle charge density and not on the absolute charge of the particle.  相似文献   

15.
The interaction of gum arabic (GA) and bovine serum albumin (BSA) has been investigated through turbidity and light scattering intensity measurements and by the use of dynamic light scattering, laser Doppler velocimetry, and isothermal titration calorimetry. It has been shown that GA and BSA can form soluble and insoluble complexes depending on the solution pH and the mixing ratio and is a function of the net charge on the complex. Soluble complexes were obtained when the electrophoretic mobility was greater than ±1. 5 μm s(-1) V(-1) cm(-1). Changes in the value of the isoelectric point of the complexes with mixing ratio and isothermal titration calorimetric data indicated that complexes formed at pHs 3 and 4 consisted of ~60 BSA molecules for every GA molecule, while at pH 5 there were ~10 BSA molecules per GA molecule. Calorimetric studies also indicated that the interaction occurred in two stages at both pH 3 and pH 4, but that the nature of the interaction at these two pH values was significantly different. This was attributed to differences in the relative magnitude of the positive and negative charges on the BSA and GA, respectively, and possibly due to changes in the BSA conformation. The fact that there is an interaction at pH 5, which is above the isoelectric point of the BSA, is due to the interaction of the carboxylate groups on the GA with positive patches on the BSA or to the charge regulation of the protein-polysaccharide system brought about by changes in dissociation equilibria. Complexation is reduced as the ionic strength of the solvent increases and is prevented at a NaCl concentration of 120 mM.  相似文献   

16.
The surface charge of epithelial cells isolated from the toad bladder has been determined by the microscope method of cell electrophoresis. The cells possess a net negative charge, and a net surface charge density of 3.6 x 104 electronic charges per square micron at pH 7.3. Estimates of net surface charge over the alkaline pH range indicate (a) that an average distance of the order of 40 A separates the negatively charged groups, and (b) that amino as well as acid groups are present at the electrophoretic surface of shear. A significant increase in mobility following cyanate treatment of the cells suggests that a large proportion of the amino groups are the ε-amino groups of lysine. In view of the known effects of calcium and other divalent ions on cell permeability and cell adhesion, the extent of binding of calcium and magnesium to the cell surface was determined by the electrophoretic technique. Mobility was significantly decreased in the presence of calcium or magnesium, indicating that these ions are bound by surface groups. When the pH was lowered from 7.3 to 5.2, calcium binding was markedly decreased, an observation consistent with competition between calcium and hydrogen ions for a common receptor site.  相似文献   

17.
Excellent correlation was observed for the electrophoretic mobilities measured by capillary zone electrophoresis versus q/MW2/3, where q is the calculated charge and MW is the molecular weight. Mobilities of a set of 33 diverse peptides from enzymatic digests and 10 intact proteins were measured for separations at pH 2.35, 8.0, and 8.15 with constant ionic strength, temperature, and viscosity. The correlation suggests that the frictional drag is proportional to the surface area of a sphere that has a volume proportional to the MW. The correlation of electrophoretic mobility with physicochemical properties will facilitate the elucidation of optimum separation strategies for protein and peptide mixtures.  相似文献   

18.
Possible effects of changes in net charge on protein hydrogen exchange rates were investigated by desalting hen egg-white lysozyme, which allowed its net charge to increase with decreasing pH in the acid region. Chloride ion-binding ratios, expressed as ratios of free to total Cl?, were measured with a chloride-specific electrode at pH 5 on a 2.4% solution of a five-time-desalted product. This ratio was used to show a 97% reduction of the 11% Cl? present in a commercial lysozyme preparation upon three passes of the enzyme through a column of ion-retardation resin. Net charges on the purified product were assigned from a combination of electrophoretic mobility and proton titration data gathered under minimal ionic strength conditions. The net charge on the desalted product increased by 1.64 units between pH 5.0 and 3.0. Hydrogendeuterium exchange studies on the purified lysozyme in D2O were obtained using the near-infrared region of a Cary 14R spectrophotometer. The rate-pD profile for k2, the rate constant for the intermediate class of exchanging hydrogens, showed a decrease in the apparent pD of minimum exchange rate of 0.3 units, when compared to that obtained earlier in 0.2 m added NaCl. However, the rate of exchange at pD minimum and the number of hydrogens in the class remained largely unaffected. A similar shift was observed for the rate-pD profile of the class 1 hydrogens. Thus, the effect of an increase in net positive charge is to shift the rate-pD profile to a lower pD. Moreover, the effect extended to the interior peptide hydrogens of this globular protein. Consequently, the exchange rates of all the observable hydrogens are altered by the net charge changes, and the effect appeared uniform. The shift can be accounted for quantitatively by applying electrostatic interaction terms to the acid and base catalytic constants characterizing the exchange process. The calculated electrostatic interaction factors in minimal salt and 0.2 m added NaCl were found to be 29 and 18% lower, respectively, than those obtained theoretically. Therefore, under conditions where changes in net charge may occur for a globular protein, the effect on hydrogen exchange rates can be estimated fairly well theoretically, especially at moderate ionic strengths.  相似文献   

19.
Rune Björkman 《Phytochemistry》1973,12(7):1585-1590
The proteins from rape seed meal and serum albumin were incubated with the 35S-labelled glucosinolates progoitrin, gluconapin, and glucoalyssin in a variety of reaction conditions. Intact glucosinolates and oxazolidinethiones were found to combine with the proteins to a very small extent, independently of pH; but the isothiocyanates reacted readily with the proteins at pH values higher than 6. Fractionation of the rape seed protein conjugates on Sephadex G200 showed that isothiocyanates particularly reacted with the basic low molecular weight proteins. Changes in UV-spectrum and electrophoretic mobility after reaction with isothiocyanates were also demonstrated.  相似文献   

20.
Fourteen myoglobins of known sequence were examined by polyacrylamide gel electrophoresis at five pH values. Gels at each pH divided the sequences into six to eight distinct classes, while the combination of the results of three gels at different pH levels distinguished 13 of 14, or 93%, of the sequences. The relative mobility of the myoglobins in the gels is significantly correlated with the charges of the proteins calculated from the pK values of the ionized groups. Major differences in mobility corresponded to expected differences in charge due to the amino acid substitutions between sequences. In addition to sequences differing in the total number of acidic and basic residues, those differing from each other in the total number of histidines were distinguished on low-pH gels. One pair of sequences differing by the exchange of lysine for arginine was separated on high-pH gels, as predicted from the differences in ionization of these two amino acids. On gels at pH 10.4, there was greater deviation of electrophoretic mobility from charge than on other gels, possibly due to the influence of amino acid substitutions in the neighborhood of lysine residues. Manipulation of the concentration and composition of the gels did not change the separation of the sequences from each other. Examination of myoglobins by gel electrophoresis at a wide range of pH values allows discrimination of nearly all amino acid substitutions and demonstrates the close relationship between titration and relative electrophoretic mobility.This work was supported by NIH Grants GM 24849 to R. C. Lewontin and CA 28854 to M. Skolnick.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号