首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lizard Phrynosoma, with purely cone retina, provides a simplex flicker response contour (log critical flash intensity as a function of flash frequency). It is well described as a normal probability integral (F - log I). The Phrynosoma curve differs markedly, in higher slope and in higher median intensity level, from that obtained under the same conditions for the turtle Pseudemys, also with entirely cone retina. Other comparisons having a bearing on the duplexity doctrine are discussed.  相似文献   

2.
After Fundulus heteroclitus have been for some time in the laboratory, under conditions favorable for growth, and after habituation of the fishes to the simple routine manipulations of the observational procedure required, they are found to give reproducible values of the mean critical flash illumination (Im) resulting in response to visual flicker. The measurements were made with equality of light time and dark time in the flash cycle, at 21.5°C. Log Im as a function of flash frequency F has the same general form as that obtained with other fishes tested, and for vertebrates typically: the curve is a drawn-out S, with a second inflection at the low I end. In details, however, the curve is somewhat extreme. Its composite form is readily resolved into the two usual parts. Each of these expresses a contribution in which log I, as a function of F, is accurately expressed by taking F as the summation (integral) of a probability distribution of d log I, as for the flicker response contour of other animals. As critical intensity I increases, the contribution of rod elements gradually fades out; this decay also adheres to a probability integral. The rod contribution seen in the curve for Fundulus is larger, absolutely and relatively to that from the cones, than that found with a number of other vertebrates. The additive overlapping of the rod and cone effects therefore produces a comparatively extreme distortion of the resulting F-log I curve. The F-log Im curve is shifted to lower intensities as result of previous exposure to supranormal temperatures. This effect is only very slowly reversible. The value of F max. for each of the components of the duplex curve remains unaffected. The rod and cone segments are shifted to the same extent. The persisting increase of excitability thus fails to reveal any chemical or other differentiation of the excitability mechanism in the two groups of elements. Certain bearings of the data upon the theory of the flicker response contour are discussed, with reference to the measurements of variation of critical intensity and to the form of the F-log I curve. The quantitative properties of the data accord with the theory derived from earlier observations on other forms.  相似文献   

3.
The flicker response contour for the frog Rana pipiens exhibits the duplex character typical for most vertebrates. By comparison (under the same conditions of temperature, 21.5°, and light-time fraction, = 0.5), the low intensity section of the F - log I curve is the smallest thus far found. The cone portion of the curve is satisfactorily described by a probability integral. The rod part represents the addition of a small group of sensory effects upon the lower end of the cone curve, from which it can be analytically separated. The relation between the two groups of sensory effects permits certain tests of the rule according to which (in homogeneous data) Im and σ1I1 are in direct proportion.  相似文献   

4.
The curve connecting mean critical illumination (Im) and flicker frequency (F) for response of the sunfish Lepomis (Enneacanthus gloriosus) to flicker is systematically displaced toward lower intensities by raising the temperature. The rod and cone portions of the curve are affected in a similar way, so that (until maximum F is approached) the shift is a nearly constant fraction of Im for a given change of temperature. These relationships are precisely similar to those found in the larvae of the dragonfly Anax. The modifications of the variability functions are also completely analogous. The effects found are consistent with the view that response to flicker is basically a matter of discrimination between effect of flashes of light and their after effects,—a form of intensity discrimination. They are not consistent with the stationary state formulation of the shape of the flicker curve. An examination of the relationships between the cone portion and the rod portion of the curves for the sunfish suggests a basis for their separation, and provides an explanation for certain "anomalous" features of human flicker curves. It is pointed out how tests of this matter will be made.  相似文献   

5.
For the sunfish Enneacanthus the mean value of the critical illumination for response to visual flicker at constant flash frequency (with light time = dark time) is related to temperature by the Arrhenius equation. The temperature characteristic for 1/Im is different above and below 20°C. In each range (12° to 20°; 20° to 30°) the temperature characteristic is the same for rod and cone segments of the duplex flicker response contour: 8,200 and 14,400. This makes it difficult, if not impossible, to consider that the two groups of elements are organized in a significantly different way chemically. For the presumptively rod-connected elements implicated in response to flicker, the curve is markedly discontinuous, so that the high and low temperature parts are dislocated; whereas for the cones they are not. This is entirely consistent with other (e.g., genetic) evidence pointing to their separate physical substrata. The uncommon exhibition of a higher µ over a higher range of temperature, previously found, however, in a few cases, together with the different relations of rod and cone effects to the critical temperature, explain aspects of these data which in earlier incomplete measurements were found to be puzzling.  相似文献   

6.
The sun-fish Lepomis responds to a moving system of stripes by a motion of its body. By changing the velocity of motion of the stripe system different flicker frequencies can be produced and thus the relation of flicker frequency to critical intensity of illumination can be studied. Threshold illumination varies with flicker frequency in such a way that with increasing flicker frequency the intensity of illumination must be increased to produce a threshold response in the fish. The curve of critical illumination as a function of frequency is made up of two distinct parts. For an intensity range below 0.04 millilambert and flicker frequencies below 10 per second, the rods are in function. For higher intensities and flicker frequencies above 10, the cones come into play. The maximum frequency of flicker which can be perceived by the fish''s eye is slightly above 50 per second. The flicker curve for the eye of Lepomis can easily be compared with that for the human eye. The extent of the curve for the fish is greater at low illuminations, the fish being capable of distinguishing flicker at illuminations lower than can the human eye. The transition of rod vision to cone vision occurs for the fish and for the human eye at the same intensity and flicker frequency. The maximum frequency of flicker which can be perceived is for both about the same.  相似文献   

7.
Three features appear to characterize steady-state light adaptation in vertebrate cone photoreceptors: (a) the shape of the “log intensity-response” curve at different levels of adaptation is the same, the only change with adaptation is in the position of the point on the curve about which the cones operate; (b) at high adapting intensities the operating point becomes fixed in position; (c) this fixed position is at the steepest point of the log intensity-response curve. These three features can be described by a mathematical model.  相似文献   

8.
1. An extension of a previously described method makes possible the measurement of the visibility function of Lepomis at high intensities of spectral illumination. This is accomplished by determining the relative energies of various spectral beams which will just produce a visual orienting response by the animal to the movement of a pattern composed of fine lines. 2. The function so determined is different from that obtained with a pattern composed of wide bars and spaces at a lower intensity level. 3. This difference furnishes direct and quantitative proof that the eye of Lepomis is a physiologically duplex visual system and parallels the known anatomical distinctions between the rods and cones. 4. A comparison of the visibility curves of the two systems indicates that both functions are similar in shape but that the cone curve is shifted to the red. 5. It is suggested that this relation between the two systems, which is also found in the human and the fowl, indicates that the photosensory substance is the same in each case for the rods and cones. According to this hypothesis, the shift of the cone curve is due to a common physical cause which depends on differences in the properties of the solvent media in the cones and in the rods.  相似文献   

9.
10.
Flicker response curves have been obtained at 21.5°C. for three genera of fresh water teleosts: Enneacanthus (sunfish), Xiphophorus (swordtail), Platypoecilius (Platy), by the determination of mean critical intensities for response at fixed flicker frequencies, and for a certain homogeneous group of backcross hybrids of swordtail x Platy (Black Helleri). The curves exhibit marked differences in form and proportions. The same type of analysis is applicable to each, however. A low intensity rod-governed section has added to it a more extensive cone portion. Each part is accurately described by the equation F = Fmax./(1 + e -p log-p logI/Ii), where F = flicker frequency, I = associated mean critical intensity, and Ii is the intensity at the inflection point of the sigmoid curve relating F to log I. There is no correlation between quantitative features of the rod and cone portions. Threshold intensities, p, Ii, and Fmax. are separately and independently determined. The hybrid Black Helleri show quantitative agreement with the Xiphophorus parental stock in the values of p for rods and cones, and in the cone Fmax.; the rod Fmax. is very similar to that for the Platy stock; the general level of effective intensities is rather like that of the Platy form. This provides, among other things, a new kind of support for the duplicity doctrine. Various races of Platypoecilius maculatus, and P. variatus, give closely agreeing values of Im at different flicker frequencies; and two species of sunfish also agree. The effect of cross-breeding is thus not a superficial thing. It indicates the possibility of further genetic investigation. The variability of the critical intensity for response to flicker follows the rules previously found to hold for other forms. The variation is the expression of a property of the tested organism. It is shown that, on the assumption of a frequency distribution of receptor element thresholds as a function of log I, with fluctuation in the excitabilities of the marginally excited elements, it is to be expected that the dispersion of critical flicker frequencies in repeated measurements will pass through a maximum as log I is increased, whereas the dispersion of critical intensities will be proportional to Im; and that the proportionality factor in the case of different organisms bears no relation to the form or position of the respective curves relating mean critical intensity to flicker frequency. These deductions agree with the experimental findings.  相似文献   

11.
In retinitis pigmentosa (RP), various mutations cause rod photoreceptor cell death leading to increased oxygen levels in the outer retina, progressive oxidative damage to cones, and gradual loss of cone cell function. We have been exploring the potential of overexpressing components of the endogenous antioxidant defense system to preserve cone cell function in rd10+/+ mice, a model of RP. rd10+/+ mice deficient in superoxide dismutase 1 (SOD1) showed increased levels of superoxide radicals and carbonyl adducts (a marker of oxidative damage) in the retina and more rapid loss of cone function than rd10+/+ mice with normal levels of SOD1. This suggests that SOD1 is an important component of the antioxidant defense system of cones, but increased expression of SOD1 in rd10+/+ mice increased oxidative damage and accelerated the loss of cone function. Coexpression of SOD1 with glutathione peroxidase 4 (Gpx4), which like SOD1 is localized in the cytoplasm, but not with catalase targeted to the mitochondria, reduced oxidative damage in the retina and significantly slowed the loss of cone cell function in rd10+/+ mice. Gene transfer resulting in increased expression of SOD2, but not coexpression of SOD2 and mitochondrial Gpx4, resulted in high levels of H2O2 in the retina. These data suggest that to provide benefit in RP, overexpression of an SOD must be combined with expression of a peroxide-detoxifying enzyme in the same cellular compartment.  相似文献   

12.
The curve of mean critical flicker frequency as a function of illumination has been determined for the reaction of the sunfish Lepomis to flicker. It exhibits expected quantitative disagreements with the curve of mean critical illumination as a function of flicker frequency in the same organism. The form of the dependence of the variation of critical frequency of flicker upon illumination can be predicted from a knowledge of the way in which variation of critical illumination depends upon flicker frequency. It is pointed out that these findings have an important bearing upon the interpretation of the data of intensity discrimination.  相似文献   

13.
14.
Dynactin is a multi-subunit complex that serves as a critical cofactor of the microtubule motor cytoplasmic dynein. We previously identified dynactin in the nerve growth cone. However, the function of dynactin in the growth cone is still unclear. Here we show that dynactin in the growth cone is required for constant forward movement of the growth cone. Chromophore-assisted laser inactivation (CALI) of dynamitin, a dynactin subunit, within the growth cone markedly decreases the rate of growth cone advance. CALI of dynamitin in vitro dissociates another dynactin subunit, p150Glued, from dynamitin. These results indicate that dynactin, especially the interaction between dynamitin and p150Glued, plays an essential role in growth cone advance.  相似文献   

15.
Summary Spectral sensitivity curves were measured for bluegills using a heart-rate conditioning technique. A mean spectral sensitivity curve (n=3) determined using a white background exhibited two main peaks, indicating the possible presence of two cone photoreceptors mechanisms. Chromatic adaptation was used to separate the contribution of the cone mechanisms to sensitivity. Peak sensitivities were located at 540 and 640 nm against red and blue-green backgrounds, respectively.Light adaptation curves were measured for each cone mechanism indicating that these cone mechanisms have their greatest contrast sensitivity at higher background intensities. Spatial summation properties were also measured for each cone mechanism revealing a critical diameter (summation area) of 5° for both mechanisms.Microspectrophotometric (MSP) measurements were made on individuals from the same group of bluegills used in the above experiments. The results showed the presence of two cone types: single green-sensitive cones with an average max of 536 nm (SD±1.8nm,n=11) and twin redsensitive cones with an average max of 620 nm (SD ±1.9 nm,n=11).The correlation between the visual pigment absorption spectra and action spectra of the two cone mechanisms indicate a sound physiological basis for sensitivity. The functional properties of the two cone mechanisms, will be discussed in relation to the ecological and behavioral aspects of bluegills.Abbreviation TVI threshold vs intensity  相似文献   

16.
From the relations between critical illumination in a flash (Im) and the flash frequency (F) for response of the sunfish to visual flicker when the proportion of light time to dark time (tL/tD) in a flicker cycle is varied at one temperature (21.5°) the following results are obtained: At values of tL/tD between 1/9 and 9/1 the F - log Im curves are progressively shifted toward higher intensities and lower Fmax.. Fmax. is a declining rectilinear function of the percentage of the flash cycle time occupied by light. The rod and the cone portions of the flicker curve are not shifted to the same extent. The cone portion and the rod region of the curve are each well described by a probability integral. In terms of F as 100 F/Fmax. the standard deviation of the underlying frequency distribution of elemental contributions, summed to produce the effect proportional to F, is independent of tL/tD. The magnitude of log Im at the inflection point (r''), however, increases rectilinearly with the percentage light time in the cycle. The proportionality between Im and σII1 is independent of tL/tD. These effects are interpreted as consequences of the fact that the number of elements of excitation available for discrimination of flicker is increased by increasing the dark interval in a flash cycle. Decreasing the dark interval has therefore the same kind of effect as reducing the visual area, and not that produced by decreasing the temperature.  相似文献   

17.
11-cis-Retinol has previously been shown in physiological experiments to promote dark adaptation and recovery of photoresponsiveness of bleached salamander red cones but not of bleached salamander red rods. The purpose of this study was to evaluate the direct interaction of 11-cis-retinol with expressed human and salamander cone opsins, and to determine by microspectrophotometry pigment formation in isolated salamander photoreceptors. We show here in a cell-free system using incorporation of radioactive guanosine 5′-3-O-(thio)triphosphate into transducin as an index of activity, that 11-cis-retinol inactivates expressed salamander cone opsins, acting an inverse agonist. Similar results were obtained with expressed human red and green opsins. 11-cis-Retinol had no significant effect on the activity of human blue cone opsin. In contrast, 11-cis-retinol activates the expressed salamander and human red rod opsins, acting as an agonist. Using microspectrophotometry of salamander cone photoreceptors before and after bleaching and following subsequent treatment with 11-cis-retinol, we show that 11-cis-retinol promotes pigment formation. Pigment was not formed in salamander red rods or green rods (containing the same opsin as blue cones) treated under the same conditions. These results demonstrate that 11-cis-retinol is not a useful substrate for rod photoreceptors although it is for cone photoreceptors. These data support the premise that rods and cones have mechanisms for handling retinoids and regenerating visual pigment that are specific to photoreceptor type. These mechanisms are critical to providing regenerated pigments in a time scale required for the function of these two types of photoreceptors.11-cis-Retinol is the precursor to 11-cis-retinal, the 11-cis-aldehyde form of vitamin A and the chromophore that combines covalently with rod and cone opsin proteins to form visual pigments. 11-cis-Retinal is consumed during visual signaling, and its continual synthesis is required. Photon absorption by the visual pigments causes the isomerization of its chromophore to the all-trans configuration. This initiates two processes critical for vision: activation of the photoreceptor cell and the eventual recovery of the original photosensitivity of the cells, requiring regeneration of the visual pigments. As cones are used for bright light vision, these two processes must work more rapidly in cones than in rods and thus cones have a higher requirement of 11-cis-retinoids as suggested by Rushton (1, 2).Photoreceptor activation begins with photoisomerization of the chromophore within the visual pigment. This results in a subsequent conformational change of the protein part of the visual pigment that is able to activate its G protein transducin, which in turn activates a PDE that lowers the concentration of cGMP and closes cGMP-gated ion channels. These steps comprise the visual signal transduction cascade (see Ref. 3 for review).The visual cycle involves regeneration of the visual pigment, which ultimately deactivates the protein and accomplishes the recovery of the photosensitivity of the photoreceptor cell. Classically, this process involves both the photoreceptor cell and the retinal pigment epithelium (RPE).4 After photoisomerization of the chromophore and formation of the active visual pigment, all-trans-retinal is released from the opsin and reduced to all-trans-retinol, which is then transported to the RPE where it is isomerized to 11-cis-retinol through a number of steps. In the RPE, 11-cis-retinol is oxidized to the aldehyde form, which is transported back to the photoreceptor cell and can be directly used by all of the opsins to regenerate an inactive pigment ready for photoactivation. The details of this model have been extensively reviewed (4, 5). Alternatively, recent work suggests that cones have an additional source of 11-cis-retinoids from Müller cells (68). Like the RPE cells, Müller cells have been shown to be able to convert all-trans-retinol to 11-cis-retinol (6). Unlike in the RPE cells, 11-cis-retinol is not oxidized to 11-cis-retinal in Müller cells.Jones et al. (9) demonstrated that administration of 11-cis-retinol to bleached salamander red cones could restore photosensitivity. A logical conclusion was that red cones were able to oxidize 11-cis-retinol to the aldehyde and regenerate visual pigments although noncovalent binding of 11-cis-retinol to red cone opsins generating a light-sensitive complex could not be excluded. On the other hand, 11-cis-retinol does not restore photosensitivity to bleached salamander rod cells but appears to directly activate the cells (9, 10). The data suggested that the rods were not able to oxidize 11-cis-retinol, but that the retinol itself could activate the signal transduction cascade, and indeed we recently demonstrated that 11-cis-retinol acts as an agonist to expressed bovine rod opsin (11). Our aim here was to study the action of 11-cis-retinol on cone opsins and cone photoreceptor cells to determine the efficacy of an alternate visual cycle for cones.The photoreceptor cells used in this study are from tiger salamander, and the expressed opsins used for biochemical experiments are those from salamander and human. Photoreceptor cells are generally identified by cell morphology and the type of opsin it contains that can be further complicated by the findings that some cone cells have multiple opsins (12, 13). Recently genetic analysis has determined that opsins fall into five classes (reviewed in Refs. 14 and 15). We have studied opsins falling into four of these classes and use common color-derived names for the opsins and photoreceptor cells. The classic rod cells used for scotopic vision contain rhodopsin, the visual pigment for the rod opsin (RH1 opsin) and appeared red and thus have been designated as red rods. Some species such as salamanders have an additional rod cell whose photosensitivity is blue-shifted from that of the red rod and thus designated as green rods. In the tiger salamander, the green rods contain the identical opsin (SWS2 opsin) found in blue cones (16). The human blue cones contain an opsin from a different class (SWS1 opsin), which is homologous to the salamander UV cone opsin. The human red and green and salamander red cone opsins all belong to the same class of opsins (M/LWS opsins). Absorption properties of visual pigments are further modulated in some animals including the tiger salamander by use of 11-cis-retinal with an additional double bond (3,4-dehydro or A2 11-cis-retinal) resulting in red-shifted absorbance from pigments containing 11-cis-retinal (A1 11-cis-retinal).We show here that 11-cis-retinol is not an agonist to cone opsins and does not itself generate a light-sensitive opsin. We further show using microspectrophotometry that both red and blue salamander cone cells regenerate visual pigments from 11-cis-retinol, whereas pigments could not be regenerated with 11-cis-retinol in bleached salamander red and green rods even though the latter contains the same opsin as the salamander blue cone. Thus, rods and cones have mechanisms for handling retinoids and regenerating visual pigment that are specific to photoreceptor type, and these mechanisms are critical to providing regenerated pigments in a time scale required for the function of these two types of photoreceptors.  相似文献   

18.
The Luminosity Curve of the Protanomalous Fovea   总被引:4,自引:1,他引:3  
Threshold spectral sensitivities (in the dark, or against bright colored backgrounds) are identical in the red-green range for both protanopes (dichromats) and protanomalous trichromatic color defectives. The latter, however, must have an additional photolabile cone pigment in the red-green range, and its presence is revealed by heterochromatic brightness matching through the spectrum (i.e. luminosity curves). The absorption spectrum of the anomalous cone pigment can be inferred from the protanomalous and protanopic luminosity curve, given reasonable assumptions as to how the different cone mechanisms pool their responses. Depending upon these assumptions, the pigment inferred is either (a) dilute solution of the normal red pigment (assumed density 1.0 for the deuteranope) or (b) similar in its absorption spectrum to the normal green pigment but shifted slightly toward the long wave end of the spectrum. Experimental attempts to choose between these alternatives have so far proved equivocal though (b) seems more likely on the basis of indirect evidence.  相似文献   

19.
The flicker response contour has been determined for several species and types of the teleosts Xiphophorus (X.) and Platypoecilius (P.) under the same conditions. The curve (F vs. log Im) is the same for representatives of each generic type, but is different for the two genera. Its duplex nature is analyzable in each instance by application of the probability integral equation to the rod and cone constituent parts. The parameters of this function provide rational measures of invariant properties of the curves, which have specific values according to the genetic constitution of the animal. The F 1 hybrids (H'''') of X. montezuma x P. variatus show dominance of the X. properties with respect to cone Fmax. and σ'' log I, but an intermediate value of the abscissa of inflection (τ''). The rod segment shows dominance of σ'' log I from P., but an intermediate value of Fmax. and of τ''. The composite flicker curve involves the operation of two distinct assemblages of excitable elements, differing quantitatively but not qualitatively in physicochemical organization, probably only secondarily related to the histological differentiation of rods and cones because almost certainly of central nervous locus, but following different rules in hereditary determination, and therefore necessarily different in physical organization. The interpretation of the diverse behavior of the three parameters of the probability summation is discussed, particularly in relation to the physical significance of these parameters as revealed by their quantitative relations to temperature, retinal area, and light time fraction in the flash cycle, and to their interrelations in producing the decline of rod effects at higher intensities. It is stressed that in general the properties of the parameters of a chosen interpretive analytical function must be shown experimentally to possess the physical properties implied by the equation selected before the equation can be regarded as describing those invariant properties of the organic system concerned upon which alone can deduction of the nature of the system proceed. The importance of genetic procedures in furthering demonstration that the biological performance considered in any particular case exhibits constitutionally invariant features provides a potentially powerful instrument in such rational analysis.  相似文献   

20.
The fine structure of the cone and rod outer segments of the toad was studied under the electron microscope after fixation in osmium tetroxide and fixation in formaldehyde followed by chromation. In the OsO4-fixed specimens, the rod outer segment appears to be built of a stack of lobulated flattened sacs, each of which is made of two membranes of about 40 A separated by an innerspace of about 30 A. The distance between the rod sacs is about 50 A. The sacs in the cone outer segment are originated by the folding of a continuous membrane. The thickness of the membranes and width of the spaces between the cone sacs is the same as in rod, but the sac innerspace is slightly narrower in the cone (~ 20 A). After fixation in formaldehyde and chromation, two different dense lines (l1 and l2) separated by spaces of less density appear. One of the lines, l1, has a thickness of 70 A and is less dense than the other, l2, which is 30 A thick. The correlation of the patterns obtained with both fixatives is considered and two possible interpretations are given. The possibility that l2 is related to a soluble phospholipid component is discussed. It is suggested that the outer segments have a paracrystallin organization similar to that found in myelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号