首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of guaiacol resembles that of certain protoplasmic surfaces to such an extent that it can be advantageously used in models designed to imitate certain aspects of protoplasmic behavior. In these models the electrical potentials appear to consist of diffusion potentials and this may be true of certain living cells. In dealing with models we determine ionic mobilities and use these to predict potentials. In studying living cells we measure potentials and from these calculate ionic mobilities. The question arises, how far is this method justified. To test this we have treated guaiacol like a living cell, measuring potentials and from these estimating ionic mobilities. The results Justify the use of this method. This is of interest because the method is most useful in studying protoplasmic activity. In its extended form it enables us to follow changes in mobilities and in partition coefficients due to applied reagents and to metabolism.  相似文献   

2.
In normal cells of Valonia the order of the apparent mobilities of the ions in the non-aqueous protoplasmic surface is K > Cl > Na. After treatment with 0.01 M guaiacol (which does not injure the cell) the order becomes Na > Cl > K. As it does not seem probable that such a reversal could occur with simple ions we may assume provisionally that in the protoplasmic surface we have to do with charged complexes of the type (KX I)+, (KX II)+, where X I and X II are elements or radicals, or with chemical compounds formed in the protoplasm. When 0.01 M guaiacol is added to sea water or to 0.6 M NaCl (both at pH 6.4, where the concentration of the guaiacol ion is negligible) the P.D. of the cell changes (after a short latent period) from about 10 mv. negative to about 28 mv. positive and then slowly returns approximately to its original value (Fig. 1, p. 14). This appears to depend chiefly on changes in the apparent mobilities of organic ions in the protoplasm. The protoplasmic surface is capable of so much change that it does not seem probable that it is a monomolecular layer. It does not behave like a collodion nor a protein film since the apparent mobility of Na+ can increase while that of K+ is decreasing under the influence of guaiacol.  相似文献   

3.
In Nitella, as in Halicystis, guaiacol increases the mobility of Na+ in the outer protoplasmic surface but leaves the mobility of K+ unaffected. This differs from the situation in Valonia where the mobility of Na+ is increased and that of K+ is decreased. The partition coefficient of Na+ in the outer protoplasmic surface is increased and that of K+ left unchanged. Recovery after the action current is delayed in the presence of guaiacol and the action curves are "square topped."  相似文献   

4.
The behavior of the cell depends to a large extent on the permeability of the outer non-aqueous surface layer of the protoplasm. This layer is immiscible with water but may be quite permeable to it. It seems possible that a reversible increase or decrease in permeability may be due to a corresponding increase or decrease in the water content of the non-aqueous surface layer. Irreversible increase in permeability need not be due primarily to increase in the water content of the surface layer but may be caused chiefly by changes in the protoplasm on which the surface layer rests. It may include desiccation, precipitation, and other alterations. An artificial cell is described in which the outer protoplasmic surface layer is represented by a layer of guaiacol on one side of which is a solution of KOH + KCl representing the external medium and on the other side is a solution of CO2 representing the protoplasm. The K+ unites with guaiacol and diffuses across to the artificial protoplasm where its concentration becomes higher than in the external solution. The guaiacol molecule thus acts as a carrier molecule which transports K+ from the external medium across the protoplasmic surface. The outer part of the protoplasm may contain relatively few potassium ions so that the outwardly directed potential at the outer protoplasmic surface may be small but the inner part of the protoplasm may contain more potassium ions. This may happen when potassium enters in combination with carrier molecules which do not completely dissociate until they reach the vacuole. Injury and recovery from injury may be studied by measuring the movements of water into and out of the cell. Metabolism by producing CO2 and other acids may lower the pH and cause local shrinkage of the protoplasm which may lead to protoplasmic motion. Antagonism between Na+ and Ca++ appears to be due to the fact that in solutions of NaCl the surface layer takes up an excessive amount of water and this may be prevented by the addition of suitable amounts of CaCl2. In Nitella the outer non-aqueous surface layer may be rendered irreversibly permeable by sharply bending the cell without permanent damage to the inner non-aqueous surface layer surrounding the vacuole. The formation of contractile vacuoles may be imitated in non-living systems. An extract of the sperm of the marine worm Nereis which contains a highly surface-active substance can cause the egg to divide. It seems possible that this substance may affect the surface layer of the egg and cause it to take up water. A surface-active substance has been found in all the seminal fluids examined including those of trout, rooster, bull, and man. Duponol which is highly surface-active causes the protoplasm of Spirogyra to take up water and finally dissolve but it can be restored to the gel state by treatment with Lugol solution (KI + I). The transition from gel to sol and back again can be repeated many times in succession. The behavior of water in the surface layer of the protoplasm presents important problems which deserve careful examination.  相似文献   

5.
A method is reported for the measurement of quercetin in human plasma using reversed-phase high-performance liquid chromatography (HPLC). Quercetin and kaempferol (as internal standard) were spiked into plasma samples and extracted using C18 Sep-Pak Light cartridges (efficiency > 85%). Flavonoids were eluted with aqueous acetone (50% v/v, pH 3.5), dried down and redissolved in aqueous acetone (45% v/v, pH 3.5). The increased osmolarity promoted a phase separation and the water-saturated acetone layer, containing the flavonoids, was analysed by HPLC with aqueous acetone mobile phase (45% v/v acetone in 250 mM sodium dihydrogen sulphate. The mixture was adjusted to pH 3.5 with phosphoric acid and used at a flow-rate of 1.0 ml/min) and μBondapak C18 column (150 × 3.9 mm I.D., 10 μm particle size). The detection limit (A375 nm) for quercetin in plasma was 0.1 μg/ml (300 nM). The method also detects metabolites of quercetin, although these are not yet identified.  相似文献   

6.
An aqueous two-phase system containing 7% Dextran T 500-5% polyethylene glycol (PEG) 6000 has been adopted for rapid selective stepwise extractions of high-mobility-group proteins and histones from both isolated chromatin and intact nuclei of calf thymus. After the dissociated proteins in the PEG phase were precipitated with 20% trichloroacetic acid at 4 degrees C, proteins were recovered from this phase by solubilization of PEG with acidified acetone at room temperature. This method allows preparation of nuclei depleted of histone H1.  相似文献   

7.
Lowering the pH of sea water from 8.2 to 6.4 lowers the positive P.D. of Halicystis reversibly (this does not happen with Valonia). Exposure to sea water at pH 6.4 does not affect the apparent mobility of Na+ or of K+ (this agrees with Valonia). Guaiacol makes the P.D. of Halicystis less positive (in Valonia it has the opposite effect). Exposure to guaiacol does not reverse the effect of KCl in Halicystis which in this respect differs from Valonia. The P.D. can be changed from 66 mv. positive to 23 mv. negative by the combined action of KCl and guaiacol. Exposure to guaiacol affects Halicystis and Valonia similarly in respect to their behavior with dilute sea water. Normally the dilute sea water makes the P.D. more negative but after sufficient exposure to guaiacol dilute sea water either produces no change in P.D. or makes it more positive. In the latter case we may assume that the apparent mobility of Na+ has become greater than that of Cl- as the result of the action of guaiacol. (Normally the apparent mobility of Cl- is greater than that of Na+.) In Halicystis, as in Valonia and in Nitella, an organic substance can greatly change the apparent mobilities of certain inorganic ions (K+ or Na+).  相似文献   

8.
Some of the factors affecting penetration in living cells may be advantageously studied in models in which the organic salts KG and NaG diffuse from an aqueous solution A, through a non-aqueous layer B (representing the protoplasmic surface) into an aqueous solution C (representing the sap and hence called artificial sap) where they react with CO2 to form KHCO3 and NaHCO3. Their relative proportions in C depend chiefly on the partition coefficients and on the diffusion constants in the non-aqueous layer. But the ratio is also affected by other variables, among which are the following: 1. Temperature, affecting diffusion constants and partition coefficients and altering the thickness of the unstirred layers by changing viscosity. 2. Viscosity (especially in the non-aqueous layers) which depends on temperature and the presence of solutes. 3. Rate of stirring, which affects the thickness of the unstirred layers and the transport of electrolyte in those that are stirred. 4. Shape and surface area of the non-aqueous layer. 5. Surface forces. 6. Reactions occurring at the outer surface such as loss of water by the electrolyte or its molecular association in the non-aqueous phase. The reverse processes will occur at the inner surface and here also combinations with acids or other substances in the "artificial sap" may occur. 7. Outward diffusion from the artificial sap. The outward movement of KHCO3 and NaHCO3 is small compared with the inward movement of KG and NaG when the concentrations are equal. This is because the partition coefficients3 of the bicarbonates are very low as compared with those of NaG and KG. Since CO2 and HCO3 - diffuse into A and combine with KG and NaG the inward movement of potassium and sodium falls off in proportion as the concentration of KG and NaG is lessened. 8. Movement of water into the non-aqueous phase and into the artificial sap. This may have a higher temperature coefficient than the penetration of electrolytes. 9. Variation of the partition coefficients with concentration and pH. Many of these variables may occur in living cells. (It happens that the range of variation in the ratio of potassium to sodium in the models resembles that found in Valonia.)  相似文献   

9.
In some living cells the order of penetration of certain cations corresponds to that of their mobilities in water. This has led to the idea that electrolytes pass chiefly as ions through the protoplasmic surface in which the order of ionic mobilities is supposed to correspond to that found in water. If this correspondence could be demonstrated it would not prove that electrolytes pass chiefly as ions through the protoplasmic surface for such a correspondence could exist if the movement were mostly in molecular form. This is clearly shown in the models here described. In these the protoplasmic surface is represented by a non-aqueous layer interposed between two aqueous phases, one representing the external solution, the other the cell sap. The order of penetration through the non-aqueous layer is Cs > Rb > K > Na > Li. This will be recognized as the order of ionic mobilities in water. Nevertheless the movement is mostly in molecular form in the nonaqueous layer (which is used in the model to represent the protoplasmic surface) since the salts are very weak electrolytes in this layer. The chief reason for this order of penetration lies in the fact that the partition coefficients exhibit the same order, that of cesium being greatest and that of lithium smallest. The partition coefficients largely control the rate of entrance since they determine the concentration gradient in the non-aqueous layer which in turn controls the process of penetration. The relative molecular mobilities (diffusion constants) in the non-aqueous layer do not differ greatly. The ionic mobilities are not known (except for K+ and Na+) but they are of negligible importance, since the movement in the non-aqueous layer is largely in molecular form. They may follow the same order as in water, in accordance with Walden''s rule. Ammonium appears to enter faster than its partition coefficient would lead us to expect, which may be due to rapid penetration of NH3. This recalls the apparent rapid penetration of ammonium in living cells which has also been explained as due to the rapid penetration of NH3. Both observation and calculation indicate that the rate of penetration is not directly proportional to the partition coefficient but increases somewhat less rapidly. Many of these considerations doubtless apply to living cells.  相似文献   

10.
The experiments with the NH4Cl are similar to, and corroborate micro injection experiments performed in connection with some work on mustard gas in which the writer collaborated. Eggs immersed in sea water containing decomposed mustard gas, at a certain low concentration are not affected. If, however, the solution be injected, the egg quickly cytolyzes owing to the free HCl present. A similar impermeability of the protoplasmic surface film to certain substances was also encountered in injection work on Amœba. Amœbœ immersed in an aqueous solution of eosin will not take the stain till after death. On the other hand, the eosin, when injected into the Amœba, quickly permeates the protoplasm, to be arrested only at the surface. The semipermeability of a living cell appears primarily to be a function of its surface film. It is immaterial whether this film be that of the original cortex of the cell, a film newly formed over a cut surface, or a film that surrounds an artificially induced vacuole within the cell. As long as such a surface film exists neither the acid group of the NH4Cl nor the alkaline group of the NaHCO3 can, within certain concentration limits, penetrate the protoplasm. These solutions, if injected beneath the surface film, however, will produce their characteristic effects upon the protoplasm.  相似文献   

11.
The extractive purification of peroxidase from Armoracia rusticana roots and Glycine max seed coats in temperature-induced and affinity microsphere-containing aqueous two-phase systems was stuied. The extractive purification of peroxidase from Glycine max seed coats was carried out in a temperature-induced aqueous two-phase system formed by Triton X-45, Triton X-100 and sodium acetate at pH 5.5 A 99% yield with a 6-fold purification factor was obtained. When the clear top phase was subjected to concanavalin-A affinity chromatography, the purification factor rose to 41 and the yield dropped to 28%. A two-step purification process for peroxidase from Armoracia rusticana roots was developed by adding concanavalin-A affinity microspheres to a PEG/phosphate aqueous two-phase system. The method allows a 60% recovery of high purity peroxidase (1,860 guaiacol units per mg). A lower recovery rate and degree of purification of this enzyme was achieved after temperature-induced aqueous two-phase partition or acetone precipitation and concanavalin-A affinity column chromatography.  相似文献   

12.
Lignin is an abundant and heterogeneous waste byproduct of the cellulosic industry, which has the potential of being transformed into valuable biochemicals via microbial fermentation. In this study, we applied a fast-pyrolysis process using softwood lignin resulting in a two-phase bio-oil containing monomeric and oligomeric aromatics without syringol. We demonstrated that an additional hydrodeoxygenation step within the process leads to an enhanced thermochemical conversion of guaiacol into catechol and phenol. After steam bath distillation, Pseudomonas putida KT2440-BN6 achieved a percent yield of cis, cis-muconic acid of up to 95 mol% from catechol derived from the aqueous phase. We next established a downstream process for purifying cis, cis-muconic acid (39.9 g/L) produced in a 42.5 L fermenter using glucose and benzoate as carbon substrates. On the basis of the obtained values for each unit operation of the empirical processes, we next performed a limited life cycle and cost analysis of an integrated biotechnological and chemical process for producing adipic acid and then compared it with the conventional petrochemical route. The simulated scenarios estimate that by attaining a mixture of catechol, phenol, cresol, and guaiacol (1:0.34:0.18:0, mol ratio), a titer of 62.5 (g/L) cis, cis-muconic acid in the bioreactor, and a controlled cooling of pyrolysis gases to concentrate monomeric aromatics in the aqueous phase, the bio-based route results in a reduction of CO2-eq emission by 58% and energy demand by 23% with a contribution margin for the aqueous phase of up to 88.05 euro/ton. We conclude that the bio-based production of adipic acid from softwood lignins brings environmental benefits over the petrochemical procedure and is cost-effective at an industrial scale. Further research is essential to achieve the proposed cis, cis-muconic acid yield from true lignin-derived aromatics using whole-cell biocatalysts.  相似文献   

13.
(S)-3-Cyano-5-methylhexanoic acid ((S)-CMHA) is the key chiral intermediate of pregabalin. In this paper, an aqueous two-phase system (ATPS) was developed to extract (S)-CMHA from nitrilase-catalyzed bioconversion broth. Inorganic salts and hydrophilic solvents were screened to form ATPS, among which an acetone/ammonium sulfate ATPS was investigated in detail, including phase diagram, effect of phase composition and stability of (S)-CMHA. The maximum product recovery of 99.15% was obtained by an optimized ATPS system composed of 15% (w/w) ammonium sulfate and 35% (w/w) acetone with the removal of 99% cells and 86.27% proteins. The total (S)-CMHA yield reached 92.11% after back-extraction. The recycling use of ammonium sulfate was investigated, and 93.10% of salt in the salt-rich phase was recovered with the addition of methanol. The results demonstrated the efficiency of the two-step extraction process for separation of (S)-CMHA.  相似文献   

14.
 Lignin-degrading manganese (II) peroxidase (MnP) purified from the culture of a wood-rotting basidiomycete, Bjerkandera adusta, was used in the polymerization of guaiacol. MnP was found to catalyze polymerization of guaiacol in 50% aqueous acetone, dimethyl formamide, methanol, ethanol, dioxane, acetonitrile, ethylene glycol and methylcellosolve. Maximum yield of polyguaiacol was achieved in 50% aqueous acetone. The weight average molecular weight (M w) of the polymer was estimated to be 30 300 by gel permeation chromatography. However, matrix-assisted laser desorption ionization time of flight mass spectroscopy (MALDI-TOF-MS) analysis gave a more reliable M w of 1690. IR, 13C-NMR, MALDI-TOF-MS and pyrolysis GC-MS analyses showed the presence of C–C and C–O linkages and quinone structure in polyguaiacol. It was also indicated that polyguaiacol has a methoxy-phenyl group as the terminal moiety. This suggests that polyguaiacol is a branched polymer in which guaiacol units are cross-linked at the phenolic group. Thermal gravimetric and differential scanning calorimetric analyses were also carried out. MnP also catalyzed the polymerization of o-cresol, 2,6-dimethoxyphenol and other phenolic compounds and aromatic amines. M w of these polymers ranged from around 1000 to 1500. Received: 2 August 1999 / Received revision: 10 December 1999 / Accepted: 4 January 2000  相似文献   

15.
Aging of aqueous guaiacol (o-methoxyphenol) solutions over a period of several months led to the spontaneous formation of peroxidatic compound(s) and other unidentified oxidation products of guaiacol. This accelerated the oxidation of guaiacol catalyzed by lactoperoxidase (LPO) severalfold depending on the pH of the reaction mixture. The peroxide(s) acted like H2O2 while the aromatic oxidation products may be more reactive than guaiacol. Five- to 12-month-old 20 mm stock solutions contained even 0.05-0.3% of H2O2 equivalents. The formation of the peroxidatic compound(s) was found to be a photochemical process which progressed in a few hours at 254 nm and slowly (detectable in 2-week-old solutions) in regular glass bottles kept under normal laboratory illumination. The kinetics and pH dependence of the oxidation of aged guaiacol solutions by LPO were distinctly different from those found with fresh substrate. The spontaneously formed peroxidatic compound is possibly a better oxygen donor in LPO assays than H2O2. The spontaneously formed aromatic oxidation products of guaiacol may include compounds that contain diphenoquinone groups. The complexity of the oxidation of guaiacol and the multitude of reaction products formed require special consideration in kinetic studies of LPO. The use of 2,2′-azino-di(3-ethylbenzthiazoline-6-sulfonic acid) as a LPO substrate was studied. The published method utilizing this substrate was modified into a more sensitive procedure by readjusting some of the reaction conditions.  相似文献   

16.
1. Particulate fractions prepared from disrupted cells of Bacillus licheniformis N.C.T.C. 6346 catalyse the uptake of radioactivity from UDP-[14C]glucuronic acid or UDP-N[14C]-acetylglucosamine. Maximal uptake requires the presence of both nucleotides and Mg2+ ions. The reaction is inhibited markedly by high concentrations of novobiocin and, to a certain extent, by vancomycin and by methicillin. 2. The radioactive product formed is resistant to Pronase and is soluble in 5% (w/v) trichloroacetic acid. It is of high molecular weight, from its behaviour on columns of Sephadex G-50 or G-200, and behaves during paper electrophoresis in n-acetic acid and chromatography on DEAE-cellulose in a manner similar to teichuronic acid. 3. Both teichuronic acid and the synthesized material are resistant to testicular hyaluronidase and to Flavobacterium heparinum heparinase. 4. The specific activity of suspensions of broken cells or of washed particulate fractions is greatest when they are prepared from exponentially growing cells. Fractions obtained from late exponential-phase or stationary-phase cells have very low activity. 5. The galactosamine content of B. licheniformis N.C.T.C. 6346 cell walls increases during the exponential phase and decreases during the stationary phase.  相似文献   

17.
Both ellagic and gallic acids non competitively inhibited guaiacol oxidation by turnip peroxidase. The Ki values were 3 and 26 μm for ellagic and gallic acid respectively. Enzymatic oxidation of gallic acid by the isolated major turnip peroxidase was characterized with respect to spectral behaviour, affinity constant and pH effect. The Km for H2O2 and gallic acid are 2.5 and 8.0 mM for turnip peroxidase. The pH optimum for gallic acid oxidation is about 6.5 and the rate constant k4 decreased with the increase of pH in presence of both guaiacol and Gallic acid. When the gallic acid oxidation products were subjected to chromatographic analysis, it was found to be converted mainly to ellagic and an unknown quinone.  相似文献   

18.
Three types of heterogenous preparations and four types of preparations of polysaccharide nature were obtained in studies aimed at the isolation of active compounds fromAspergillus flavus conidia bearing their biological stimulatory activity. Extraction with trichloroacetic acid at 0 °C yielded a preparation in which the protein component predominated over the polysaccharide moiety at a ratio of 3: 1. In the preparation isolated from the phenolic phase of the phenol—water mixture at 68 °C the protein polysaccharide ratio was 1 : 1. In the material extracted in the aquoues phase and in that obtained by extraction with acetic acid at 100 °C the polysaccharide portion highly predominated (8 : 1 and 7 : 1 respectively).  相似文献   

19.
A comparison of histochemical detection of GM1 ganglioside in cryostat sections using cholera toxin B-subunit after fixation with 4% formaldehyde and dry acetone gave tissue-dependent results. In the liver no pre-treatment showed detectable differences related to GM1 reaction products, while studies in the brain showed the superiority of acetone pre-extraction (followed by formaldehyde), which yielded sharper images compared with the diffuse, blurred staining pattern associated with formaldehyde. Therefore, the aim of our study was to define the optimal conditions for the GM1 detection using cholera toxin B-subunit.Ganglioside extractability with acetone, the ever neglected topic, was tested comparing anhydrous acetone with acetone containing admixture of water. TLC analysis of acetone extractable GM1 ganglioside from liver sections did not exceed 2% of the total GM1 ganglioside content using anhydrous acetone at −20°C, and 4% at room temperature. The loss increased to 30.5% using 9:1 acetone/water. Similarly, photometric analysis of lipid sialic acid, extracted from dried liver homogenates with anhydrous acetone, showed the loss of gangliosides into acetone 3.0±0.3% only. The loss from dried brain homogenate was 9.5±1.1%.Thus, anhydrous conditions (dry tissue samples and anhydrous acetone) are crucial factors for optimal in situ ganglioside detection using acetone pre-treatment. This ensures effective physical fixation, especially in tissues rich in polar lipids (precipitation, prevention of in situ diffusion), and removal of cholesterol, which can act as a hydrophobic blocking barrier.Key words: fixation, GM1 ganglioside, cholera toxin, anhydrous acetone, 4% formaldehyde.  相似文献   

20.
《Experimental mycology》1991,15(3):215-222
Mutations at six loci (lprA,B, C, D, E,andF) led to an increased size of mycelial aerial organs (protoperithecia and aerial hyphae) which was accompanied by a reduction in the life span of stationary phase cells. Despite having a common phenotype, the mutations acted either in protoperithecia and aerial hyphae (lprD) or in vegetative cells (lprA,B, C, E,andF). It is deduced thatlpr mutants in stationary phase die prematurely due to the uncontrolled expression of a function that converts vegetative cells into a source of nutrients to be translocated to the aerial organs. Thelpr mutant phenotype was suppressed by mutations inhibiting protoplasmic incompatibility and no recombination occurred betweenlprB and one incompatibility locus. These results suggest that protoplasmic incompatibility is a deviant expression of the cell death associated with the development of protoperithecia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号