首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When protoplasm dies it becomes completely and irreversibly permeable and this may be used as a criterion of death. On this basis we may say that when 0.2 M formaldehyde plus 0.001 M NaCl is applied to Nitella death arrives sooner at the inner protoplasmic surface than at the outer. If, however, we apply 0.17 M formaldehyde plus 0.01 M KCl death arrives sooner at the outer protoplasmic surface. The difference appears to be due largely to the conditions at the two surfaces. With 0.2 M formaldehyde plus 0.001 M NaCl the inner surface is subject to a greater electrical pressure than the outer and is in contact with a higher concentration of KCl. In the other case these conditions are more nearly equal so that the layer first reached by the reagent is the first to become permeable. The outer protoplasmic surface has the ability to distinguish electrically between K+ and Na+ (potassium effect). Under the influence of formaldehyde this ability is lost. This is chiefly due to a falling off in the partition coefficient of KCl in the outer protoplasmic surface. At about the same time the inner protoplasmic surface becomes completely permeable. But the outer protoplasmic surface retains its ability to distinguish electrically between different concentrations of the same salt, showing that it has not become completely permeable. After the potential has disappeared the turgidity (hydrostatic pressure inside the cell) persists for some time, probably because the outer protoplasmic surface has not become completely permeable.  相似文献   

2.
In Nitella the action curve has two peaks, apparently because both protoplasmic surfaces (inner and outer) are sensitive to K+. Leaching in distilled water makes the outer surface insensitive to K+. We may therefore expect the action curve to have only one peak. This expectation is realized. The action curve thus obtained resembles that of Chara which has an outer protoplasmic surface that is normally insensitive to K+. The facts indicate that the movement of K+ plays an important part in determining the shape of the action curve.  相似文献   

3.
Treatment of Nitella with distilled water apparently removes from the cell something which is responsible for the normal irritability and the potassium effect, (i.e. the large P.D. between a spot in contact with 0.01 M KCl and one in contact with 0.01 M NaCl). Presumably this substance (called R) is partially removed from the protoplasm by the distilled water. When this has happened a pinch which forces sap out into the protoplasm can restore its normal behavior. The treatment with distilled water which removes the potassium effect from the outer protoplasmic surface does not seem to affect the inner protoplasmic surface in the same way since the latter retains the outwardly directed potential which is apparently due to the potassium in the sap. But the inner surface appears to be affected in such fashion as to prevent the increase in its permeability which is necessary for the production of an action current. The pinch restores its normal behavior, presumably by forcing R from the sap into the protoplasm.  相似文献   

4.
In Nitella, as in Halicystis, guaiacol increases the mobility of Na+ in the outer protoplasmic surface but leaves the mobility of K+ unaffected. This differs from the situation in Valonia where the mobility of Na+ is increased and that of K+ is decreased. The partition coefficient of Na+ in the outer protoplasmic surface is increased and that of K+ left unchanged. Recovery after the action current is delayed in the presence of guaiacol and the action curves are "square topped."  相似文献   

5.
Guaiacol was applied at two spots on the same cell of Nitella. At one spot it was dissolved in 0.01 M NaCl, at the other in 0.01 M CaCl2 or BaCl2. The effect was practically the same in all cases, i.e. a similar change of P.D. in a negative direction, involving a more or less complete loss of P.D. (depolarization). When hexylresorcinol was used in place of guaiacol the result was similar. That Ca++ and Ba++ do not inhibit the effect of these organic depolarizing substances may be due to a lack of penetration of Ca++ and Ba++. The organic substances penetrate more rapidly and their effect is chiefly on the inner protoplasmic surface which is the principal seat of the P.D.  相似文献   

6.
Several forms of the action curve are described which might be accounted for on the ground that the outer protoplasmic surface shows no rapid electrical change. This may be due to the fact that the longitudinal flow of the outgoing current of action is in the protoplasm instead of in the cellulose wall. Hence the action curve has a short period with a single peak which does not reach zero. On this basis we can estimate the P.D. across the inner and outer protoplasmic surfaces separately. These P.D.''s can vary independently. In many cases there are successive action currents with incomplete recovery (with an increase or decrease or no change of magnitude). Some of the records resemble those obtained with nerve (including bursts of action currents and after-positivity).  相似文献   

7.
In some ways the effects of hexylresorcinol on Nitella resemble those of guaiacol but in others they differ. Both substances depress the P.D. reversibly and both decrease the potassium effect. Hexylresorcinol decreases the apparent mobility of Na+ and of K+. Guaiacol increases that of Na+ but not of K+. The action of hexylresorcinol is more striking than that of guaiacol since 0.0003 M of the former is as effective as 0.03 M of the latter in depressing the P.D. It is evident that organic substances can change the behavior of inorganic ions in a variety of ways.  相似文献   

8.
String galvanometer records show the effect of current flow upon the bioelectric potential of Nitella cells. Three classes of effects are distinguished. 1. Counter E.M.F''S, due either to static or polarization capacity, probably the latter. These account for the high effective resistance of the cells. They record as symmetrical charge and discharge curves, which are similar for currents passing inward or outward across the protoplasm, and increase in magnitude with increasing current density. The normal positive bioelectric potential may be increased by inward currents some 100 or 200 mv., or to a total of 300 to 400 mv. The regular decrease with outward current flow is much less (40 to 50 mv.) since larger outward currents produce the next characteristic effect. 2. Stimulation. This occurs with outward currents of a density which varies somewhat from cell to cell, but is often between 1 and 2 µa/cm.2 of cell surface. At this threshold a regular counter E.M.F. starts to develop but passes over with an inflection into a rapid decrease or even disappearance of positive P.D., in a sigmoid curve with a cusp near its apex. If the current is stopped early in the curve regular depolarization occurs, but if continued a little longer beyond the first inflection, stimulation goes on to completion even though the current is then stopped. This is the "action current" or negative variation which is self propagated down the cell. During the most profound depression of P.D. in stimulation, current flow produces little or no counter E.M.F., the resistance of the cell being purely ohmic and very low. Then as the P.D. begins to recover, after a second or two, counter E.M.F. also reappears, both becoming nearly normal in 10 or 15 seconds. The threshold for further stimulation remains enhanced for some time, successively larger current densities being needed to stimulate after each action current. The recovery process is also powerful enough to occur even though the original stimulating outward current continues to flow during the entire negative variation; recovery is slightly slower in this case however. Stimulation may be produced at the break of large inward currents, doubtless by discharge of the enhanced positive P.D. (polarization). 3. Restorative Effects.—The flow of inward current during a negative variation somewhat speeds up recovery. This effect is still more strikingly shown in cells exposed to KCl solutions, which may be regarded as causing "permanent stimulation" by inhibiting recovery from a negative variation. Small currents in either direction now produce no counter E.M.F., so that the effective resistance of the cells is very low. With inward currents at a threshold density of some 10 to 20 µa/cm.2, however, there is a counter E.M.F. produced, which builds up in a sigmoid curve to some 100 to 200 mv. positive P.D. This usually shows a marked cusp and then fluctuates irregularly during current flow, falling off abruptly when the current is stopped. Further increases of current density produce this P.D. more rapidly, while decreased densities again cease to be effective below a certain threshold. The effects in Nitella are compared with those in Valonia and Halicystis, which display many of the same phenomena under proper conditions. It is suggested that the regular counter E.M.F.''S (polarizations) are due to the presence of an intact surface film or other structure offering differential hindrance to ionic passage. Small currents do not affect this structure, but it is possibly altered or destroyed by large outward currents, restored by large inward currents. Mechanisms which might accomplish the destruction and restoration are discussed. These include changes of acidity by differential migration of H ion (membrane "electrolysis"); movement of inorganic ions such as potassium; movement of organic ions, (such as Osterhout''s substance R), or the radicals (such as fatty acid) of the surface film itself. Although no decision can be yet made between these, much evidence indicates that inward currents increase acidity in some critical part of the protoplasm, while outward ones decrease acidity.  相似文献   

9.
In normal cells of Valonia the order of the apparent mobilities of the ions in the non-aqueous protoplasmic surface is K > Cl > Na. After treatment with 0.01 M guaiacol (which does not injure the cell) the order becomes Na > Cl > K. As it does not seem probable that such a reversal could occur with simple ions we may assume provisionally that in the protoplasmic surface we have to do with charged complexes of the type (KX I)+, (KX II)+, where X I and X II are elements or radicals, or with chemical compounds formed in the protoplasm. When 0.01 M guaiacol is added to sea water or to 0.6 M NaCl (both at pH 6.4, where the concentration of the guaiacol ion is negligible) the P.D. of the cell changes (after a short latent period) from about 10 mv. negative to about 28 mv. positive and then slowly returns approximately to its original value (Fig. 1, p. 14). This appears to depend chiefly on changes in the apparent mobilities of organic ions in the protoplasm. The protoplasmic surface is capable of so much change that it does not seem probable that it is a monomolecular layer. It does not behave like a collodion nor a protein film since the apparent mobility of Na+ can increase while that of K+ is decreasing under the influence of guaiacol.  相似文献   

10.
The P.D. across the protoplasm of Valonia macrophysa has been studied while the cells were exposed to artificial solutions resembling sea water in which the concentration of KCl was varied from 0 to 0.500 mol per liter. The P.D. across the protoplasm is decreased by lowering and increased by raising the concentration of KCl in the external solution. Changes in P.D. with time when the cell is treated with KCl-rich sea water resemble those observed with cells exposed to Valonia sap. Varying the reaction of natural sea water from pH 5 to pH 10 has no appreciable effect on the P.D. across Valonia protoplasm. Similarly, varying the pH of KCl-rich sea water within these limits does not alter the height of the first maximum in the P.D.-time curve. The subsequent behavior of the P.D., however, is considerably affected by the pH of the KCl-rich sea water. These changes in the shape of the P.D.-time curve have been interpreted as indicating that potassium enters Valonia protoplasm more rapidly from alkaline than from acidified KCl-rich sea water. This conclusion is discussed in relation to certain theories which have been proposed to explain the accumulation of KCl in Valonia sap. The initial rise in P.D. when a Valonia cell is transferred from natural sea water to KCl-rich sea water has been correlated with the concentrations of KCl in the sea waters. It is assumed that the observed P.D. change represents a diffusion potential in the external surface layer of the protoplasm, where the relative mobilities of ions may be supposed to differ greatly from their values in water. Starting with either Planck''s or Henderson''s formula, an equation has been derived which expresses satisfactorily the observed relationship between P.D. change and concentration of KCl. The constants of this equation are interpreted as the relative mobilities of K+, Na+, and Cl- in the outer surface layer of the protoplasm. The apparent relative mobility of K+ has been calculated by inserting in this equation the values for the relative mobilities of Na+ (0.20) and Cl- (1.00) determined from earlier measurements of concentration effect with natural sea water. The average value for the relative mobility of K+ is found to be about 20. The relative mobility may vary considerably among different individual cells, and sometimes also in the same individual under different conditions. Calculation of the observed P.D. changes as phase-boundary potentials proved unsatisfactory.  相似文献   

11.
Lowering the pH of sea water from 8.2 to 6.4 lowers the positive P.D. of Halicystis reversibly (this does not happen with Valonia). Exposure to sea water at pH 6.4 does not affect the apparent mobility of Na+ or of K+ (this agrees with Valonia). Guaiacol makes the P.D. of Halicystis less positive (in Valonia it has the opposite effect). Exposure to guaiacol does not reverse the effect of KCl in Halicystis which in this respect differs from Valonia. The P.D. can be changed from 66 mv. positive to 23 mv. negative by the combined action of KCl and guaiacol. Exposure to guaiacol affects Halicystis and Valonia similarly in respect to their behavior with dilute sea water. Normally the dilute sea water makes the P.D. more negative but after sufficient exposure to guaiacol dilute sea water either produces no change in P.D. or makes it more positive. In the latter case we may assume that the apparent mobility of Na+ has become greater than that of Cl- as the result of the action of guaiacol. (Normally the apparent mobility of Cl- is greater than that of Na+.) In Halicystis, as in Valonia and in Nitella, an organic substance can greatly change the apparent mobilities of certain inorganic ions (K+ or Na+).  相似文献   

12.
The concentration effect with sea waters containing more than the normal amount of potassium has been studied in Valonia macrophysa. This was done by comparing the initial changes in P.D. across the protoplasm when natural sea water bathing the cell was replaced by various isotonic dilutions of KCl-rich sea waters. With small dilutions of KCl-rich sea waters, the P.D.-time curves are of the same form as with the undiluted solution, exhibiting the fluctuations characteristic of KCl-rich solutions. This indicates that with these solutions K+ enters Valonia protoplasm and plays an important part in the P.D. The value of the initial rise in P.D. decreases with increasing dilution. With high dilutions of KCl-rich sea waters, the P.D.-time curves are of quite different shape, resembling the curves with diluted natural sea water; the P.D. is practically independent of small changes in the concentration of potassium, and increases with increasing dilution. That is, with these higher dilutions, the sign of the concentration effect is reversed, becoming the same as with diluted natural sea water. The greater the concentration of KCl in the undiluted sea water, the higher is the critical dilution at which K+ ceases to influence the P.D. For a wide range of sea waters containing both KCl and NaCl, it is shown that the concentration effect above the critical dilution is determined solely by the activity of NaCl in the external solution. It is concluded that with dilute natural sea water and with high dilutions of KCl-rich sea waters we have to do with a diffusion potential, involving only the Na+ and Cl- ions, which are diffusing out from the vacuole. A quantitative relation between the composition of the sea water and the critical dilution has been deduced from the classical theory of the diffusion of electrolytes. It is shown that with dilutions less than this critical value the diffusion of K+ in the outer non-aqueous layer of the protoplasm is directed inward; hence K+ enters the protoplasm from these solutions. With dilutions greater than the critical value, the diffusion of K+ in this layer is directed outward; hence K+ does not enter the protoplasm. Since the P.D. shows no evidence of this outward diffusion of K+, it is concluded that the amount of K+ ordinarily present in the protoplasm is too small to produce any lasting electrical effect, and that the outward diffusion of K+ from the vacuole is prevented by the mechanism responsible for the accumulation of KCl in the cell sap.  相似文献   

13.
Treatment with distilled water removes from Nitella the ability to give the large potential difference between 0.01 M KCl and 0.01 M NaCl which is known as the potassium effect. The potassium effect may be restored by action currents. This might be explained by saying that distilled water removes from the surface a substance, R, which is responsible for the potassium effect and which moves into the surface during the action current and thereby restores the potassium effect.  相似文献   

14.
In normal cells of Nitella replacement of NaCl by KCl makes the P.D. much less positive: this is called the potassium effect. Cells which have lost the potassium effect usually show little or no change of P.D. when NaCl is replaced by KCl but an occasional cell responds after a delay. It seems possible that the delay may be largely due to the time required for potassium to combine with an organic substance, thus forming a compound which sensitizes the protoplasmic surface to the action of potassium.  相似文献   

15.
Suitable concentrations of ethyl alcohol (1 to 1.5 M) applied to a spot on a cell of Nitella lower the P.D. enough to cause action currents. The alcohol then suppresses action currents arriving from other parts of the cell and acts as a block. After the alcohol is removed the normal P.D. and irritability return. Similar experiments on the sciatic nerve and skin of the frog produced only a negative result.  相似文献   

16.
The effect of direct current, of controlled direction and density, across the protoplasm of impaled cells of Halicystis, is described. Inward currents slightly increase the already positive P.D. (70 to 80 mv.) in a regular polarization curve, which depolarizes equally smoothly when the current is stopped. Outward currents of low density produce similar curves in the opposite direction, decreasing the positive P.D. by some 10 or 20 mv. with recovery on cessation of flow. Above a critical density of outward current, however, a new effect becomes superimposed; an abrupt reversal of the P.D. which now becomes 30 to 60 mv. negative. The reversal curve has a characteristic shape: the original polarization passes into a sigmoid reversal curve, with an abrupt cusp usually following reversal, and an irregular negative value remaining as long as the current flows. Further increases of outward current each produce a small initial cusp, but do not greatly increase the negative P.D. If the current is decreased, there occurs a threshold current density at which the positive P.D. is again recovered, although the outward current continues to flow. This current density (giving positivity) is characteristically less than that required to produce reversal originally, giving the process a hysteretic character. The recovery is more rapid the smaller the current, and takes only a few seconds in the absence of current flow, its course being in a smooth curve, usually without an inflection, thus differing from the S-shaped reversal curve. The reversal produced by outward current flow is compared with that produced by treatment with ammonia. Many formal resemblances suggest that the same mechanism may be involved. Current flow was therefore studied in conjunction with ammonia treatment. Ammonia concentrations below the threshold for reversal were found to lower the threshold for outward currents. Subthreshold ammonia concentrations, just too low to produce reversal alone, produced permanent reversal when assisted by a short flow of very small outward currents, the P.D. remaining reversed when the current was stopped. Further increases of outward current, when the P.D. had been already reversed by ammonia, produced only small further increases of negativity. This shows that the two treatments are of equivalent effect, and mutually assist in producing a given effect, but are not additive in the sense of being superimposable to produce a greater effect than either could produce by itself. Since ammonia increases the alkalinity of the sap, and presumably of the protoplasm, when it penetrates, it is possible that the reversal of P.D. by current flow is also due to change of pH. The evidence for increased alkalinity or acidity due to current flow across phase boundaries or membranes is discussed. While an attractive hypothesis, it meets difficulties in H. ovalis where such pH changes are both theoretically questionable and practically ineffective in reversing the P.D. It seems best at the present time to assign the reversal of P.D. to the alteration or destruction of one surface layer of the protoplasm, with reduction or loss of its potential, leaving that at the other surface still intact and manifesting its oppositely directed potential more or less completely. The location of these surfaces is only conjectural, but some evidence indicates that it is the outer surface which is so altered, and reconstructed on recovery of positive P.D. This agrees with the essentially all-or-none character of the reversal. The various treatments which cause reversal may act in quite different ways upon the surface.  相似文献   

17.
Guanidine applied to Nitella may lower the threshold of E.M.F. required to produce electrical stimulation and may give rise to trains of action currents. Its effect thus appears to be somewhat similar to that observed in animals. Rapid action currents are produced as well as "square topped" action curves and transitional forms. These effects may be due in part to increased protoplasmic conductivity produced by the penetration of guanidine.  相似文献   

18.
On page 39, Vol. viii, No. 2, September 18, 1925, multiply the right-hand side of formula (2) by the factor See PDF for Equation. On page 44, immediately after formula (1) the text should be continued as follows: Let us suppose a membrane to be separated by two solutions of KCl of different concentrations K1 and K2 and these concentrations and the corresponding concentrations of K+ within the membrane, which are in equilibrium with the outside solutions, to be so high that the H+ ions may be neglected. When a small electric current flows across the system, practically the K+ ions alone are transferred and that in a reversible manner. Therefore the total P.D. is practically See PDF for Equation This P.D. is composed of two P.D.''s at the boundaries and the diffusion potential within the membrane. Suppose the immobility of the anions is not absolute but only relative as compared with the mobility of the cations, KCl would gradually penetrate into the membrane to equal concentration with the outside solution on either side and no boundary potential would be established. In this case the diffusion P.D. within the membrane is the only P.D., amounting to See PDF for Equation but, V being practically = 0, it would result that See PDF for Equation So the definitive result is the same as in the former case. Now cancel the printed text as far as page 48, line 13 from the top of the page, but retain Fig. 1. On page 50, line 19 from the top of the page, cancel the sentence beginning with the word But and ending with the words of the chain.  相似文献   

19.
Cells of Nitella have been studied which behave differently from those described in earlier papers. They show unexpectedly large changes in P.D. with certain concentrations of KCl. This is due to the production of action currents (these are recorded at the spot where KCl is applied). A method is given for the separate evaluation of changes of P.D. due to partition coefficients and those due to mobilities. A new amplifier and an improved flowing contact are described.  相似文献   

20.
Remarkable changes are brought about by KOH in transforming negative cells of Nitella (showing dilute solution negative with KOH) to positive cells (showing dilute solution positive with KOH). NaOH is less effective as a transforming agent. This might be explained on the ground that the protoplasm contains an acid (possibly a fatty acid) which makes the cell negative and which is dissolved out more rapidly by KOH than by NaOH, as happens with the fatty acids in ordinary soaps. Part of a negative cell can be changed to positive by exposure to KOH while the untreated portion remains negative. After exposure to KOH the potential the protoplasm has when in contact with NaCl may increase. At the same time there may be an increase in the potassium effect; i.e., in the change of P.D. in a positive direction observed when 0.01 M KCl is replaced by 0.01 M NaCl. In some cases the order of ionic mobilities is u K > v OH > u Na. This shows that the protoplasmic surface cannot be a pore system: for in such a system all cations must have greater mobilities than all anions or vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号