首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus subtilis aprE gene codes for the extracellular protease subtilisin. Its expression is controlled by AbrB, DegU, Hpr, SinI, SinR and Spo0A transition state protein regulators. To determine in vivo the protein-protein interactions among these regulators, we used the LexA-based bacterial genetic two-hybrid system. Our results show homo-dimerization to all the analyzed proteins and hetero-dimerization between SinR-SinI and SinR-Hpr.  相似文献   

2.
3.
4.
5.
6.
7.
We screened the putative rap-phr (response regulator aspartyl-phosphate phosphatase-phosphatase regulator) systems identified in the Bacillus subtilis genome for a rap gene that affects aprE (alkaline protease gene) expression by using a multicopy plasmid. We found that rapG was involved in the regulation of aprE, which belongs to the regulon of DegU, the response regulator of the DegS-DegU two-component system. Disruption of rapG and phrG resulted in enhancement and reduction of aprE-lacZ expression, respectively, suggesting that PhrG inhibits RapG activity. Addition of 1-30 nM of a synthetic pentapeptide (PhrG; NH2-EKMIG-COOH) to the phrG disruptant completely rescued aprE-lacZ expression, indicating that the PhrG peptide is indeed involved in aprE-lacZ expression. Surprisingly, either introduction of multicopy phrG or addition of the PhrG peptide at high concentrations (100-300 nM) to the phrG cells decreased aprE-lacZ expression. These results are reminiscent of the previous observation that at higher concentrations the PhrC peptide inhibits srfA-lacZ expression directed by ComA, the regulator of the ComP-ComA two-component system. Because the Rap proteins belong to a family of aspartyl protein phosphatases, we tried to investigate the possible influence of RapG on dephosphorylation of DegU-P (phosphorylated DegU) in vitro. RapG, however, did not affect dephosphorylation of DegU-P under the adopted experimental conditions. Therefore, we hypothesized that RapG might inhibit the binding activity of DegU to the target promoters. We analysed the interaction of DegU and RapG using the aprE promoter and another target, a comK promoter. Gel shift analysis revealed that RapG served as the inhibitor of DegU binding to the promoter regions of aprE and comK and that this inhibition was counteracted by the PhrG peptide.  相似文献   

8.
When Bacillus subtilis encounters a nutrient-depleted environment, it expresses a wide variety of genes that encode functions in alternative pathways of metabolism and energy production. Expression of these genes first occurs during the transition from active growth into stationary phase and is controlled by a class of proteins termed transition-state regulators. In several instances, a given gene is redundantly controlled by two or more of these regulators and many of these regulators control genes in numerous different pathways. The AbrB, Hpr and Sin proteins are the best-studied examples of these regulatory molecules. Their role is to prevent inappropriate and possibly detrimental functions from being expressed during exponential growth when they are not needed. They serve as elements integrating sporulation with ancillary stationary-phase phenomena and appear to participate in the timing of early sporulation events and in fine-tuning the magnitude of gene expression in response to specific environmental conditions.  相似文献   

9.
Application of modern gene technology to strain improvement of the industrially important bacterium Bacillus amyloliquefaciens is reported. Several different plasmid constructions carrying the alpha-amylase gene (amyE) from B. amyloliquefaciens were amplified in this species either extrachromosomally or intrachromosomally. The amyE gene cloned on a pUB110-derived high copy plasmid pKTH10 directed the highest yields both in rich laboratory medium and in crude industrial medium. The alpha-amylase activity, when compared with the parental strain, was enhanced up to 20-fold in the pKTH 10 transformant. This strain showed decreased activities for other exoenzymes, such as proteases and beta-glucanase suggesting common limiting resources in the processing of these enzymes. Deletions were made in vitro in genes encoding neutral (nprE), alkaline (aprE) protease and beta-glucanase (bglA). The engineered genes were cloned into the thermosensitive plasmid pE194, and the resulting plasmids were used to replace the corresponding wild type chromosomal genes in B. amyloliquefaciens by integration-excision at non-permissive temperature. The double mutant deficient in the major proteases (delta nprE delta aprE) showed about a 2-fold further enhancement in alpha-amylase production in the industrial medium compared with the relevant wild type backgroud, both when plasmid-free and when transformed with pKTH10; this strain also produced elevated levels of the chromosomally-encoded beta-glucanase; pKTH10 was stably maintained both in the wild type strain and in the delta nprE delta aprE mutant. We suggest that the higher yields in alpha-amylase and beta-glucanase in the delta nprE delta aprE strain are primarily due to improved access to limiting resources, and that decreased proteolytic degradation may have had a secondary role in retaining the high activity obtained.  相似文献   

10.
Bacillus subtilis neutral protease (NprE) is first produced as a precursor, pre-pro-NprE, which consists of a signal peptide or prepeptide for secretion (27 amino acid residues) and a pro-peptide (194 amino acid residues) between the signal peptide and the mature protease. While the wildtype nprE gene could not be maintained in Escherichia coli, we have been able to show that expression and secretion of the neutral protease can be achieved from the nprE gene when its ribosome binding site (RBS) is removed. The results suggest that the failure to observe expression of the wildtype nprE gene is due to the lytic effect of the nprE gene product on E. coli host cells and that translation initiation in E. coli can be achieved even in the absence of a classical ribosome binding site.  相似文献   

11.
This study describes a novel method for repeated gene inactivation in Bacillus subtilis 168. A B. subtilis strain (BS-PS) that is conditionally auxotrophic for lysine was obtained by replacing the PlysA promoter with the Pspac promoter. The homologous recombination integration vector PLC-T was constructed to contain lacI, which encodes a Pspac promoter repressor, and the chloromycetin resistance gene. Target genes were manipulated by generating an insertion sequence with two homologous arms and the target gene in PLC-T to create a specific integrating vector. Integration into the BS-PS chromosome occurred by a single crossover at either of the two homologous arms. The resulting transitional strain (BS-PS-PI) was chloromycetin resistant and lysine auxotrophic and had an unstable genome structure because of the duplication. Excision of lacI and chloromycetin resistance gene was achieved by a second single crossover at the duplication. Recovery of a lysine prototroph functioned as counter-selection and was identified by PCR. In this work, we inactivated nprE and aprE, two protease genes secreted by B. subtilis 168 free of selectable markers.  相似文献   

12.
13.
The TraM protein of plasmid R1 is a DNA-binding protein   总被引:9,自引:2,他引:7  
The TraM protein of the resistance plasmid R1 was purified to homogeneity and used for DNA-binding studies. Both gel retardation- and footprint experiments showed that TraM specifically binds to DNA of plasmid R1 comprising the region between the origin of transfer and the traM gene. Several TraM molecules bind and, according to the footprint experiments, two distinct sites of specific binding exist. The two sites are separated from each other by 12 nucleotides and each contains an inverted repeat. DNase I protection assays showed that the initial TraM binding occurs at these palindromic sequences. At higher protein concentrations the lengths of the DNA segments protected by TraM were increased towards the traM gene. In one region this extension leads to binding of TraM protein at its own promoters.  相似文献   

14.
15.
The bacteriophage SP01 genome encodes a virus-specific type II DNA-binding protein, TF1. The bacterial proteins of this ubiquitous and evolutionarily conserved class are thought to bind non-specifically to DNA. In contrast, the experiments described here demonstrate that TF1 binds to specific sites in SP01 DNA. Several of these sites have been characterized by DNase I 'footprinting' and four of them have been shown to overlap strong phage promoters for Bacillus subtilis RNA polymerase holoenzyme. We speculate on the possible structural basis of site-selective DNA binding by a protein of this class.  相似文献   

16.
Sin, a stage-specific repressor of cellular differentiation.   总被引:6,自引:6,他引:0       下载免费PDF全文
I Mandic-Mulec  N Gaur  U Bai    I Smith 《Journal of bacteriology》1992,174(11):3561-3569
  相似文献   

17.
18.
Three recombinant plasmids pPBT9, pPBT10 and pPBT74 carrying promoter-containing regions of DNA of Bacillus thuringiensis which are responsible for the expression of the promoterless tet gene, were studied. In the in vitro experiments, it had been shown that these promoter-active HindIII fragments of bacillar DNA contained RNA polymerase binding sites. The AluI subfragments that specifically bind to Escherichia coli RNA polymerase promote the tet gene expression, similar to the whole HindIII fragments. Sequence analysis revealed that the approximately 220 base pair AluI subfragment of the bacillar insertion of the pPBT10 plasmid contained sites typical for "-10" and "-35" homology regions of promoters specific for sigma 55-RNA polymerase from Bac. subtilis. The 1.45 kb HindII bacillar fragment of the plasmid pPBT9 had three AluI subfragments that bind to E. coli RNA polymerase. Only approximately 400 base pair AluI subfragment among these restored the tet gene expression in vivo. Bireplicon pBP plasmids were constructed that promoted the expression of the enterobacterial antibiotic resistance gene under the control of Bac. thuringiensis promoters in Bac. subtilis cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号