首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine heart submitochondrial particles in suspension were heated at a designated temperature for 3 min, then cooled for biochemical assays at 30 degrees C. By enzyme activity measurements and polarographic assay of oxygen consumption, it is shown that the thermal denaturation of the respiratory chain takes place in at least four stages and each stage is irreversible. The first stage occurs at 51.0 +/- 1.0 degrees C, with the inactivation of NADH-linked respiration, ATP-driven reverse electron transport, F0F1 catalyzed ATP/Pi exchange, NADH and succinate-driven ATP synthesis. The second stage occurs at 56.0 +/- 1.0 degrees C, with the inactivation of succinate-linked proton pumping and respiration. The third stage occurs at 59.0 +/- 1.0 degrees C, with the inactivation of electron transfer from cytochrome c to cytochrome oxidase and ATP-dependent proton pumping. The ATP hydrolysis activity of F0F1 persists to 61.0 +/- 1.0 degrees C. An additional transition, detectable by differential scanning calorimetry, occurring around 70.0 +/- 2.0 degrees C, is probably associated with thermal denaturation of cytochrome c and other stable membrane proteins. In the presence of either mitochondrial matrix fluid or 2 mM mercaptoethanol, all five stages give rise to endothermic effects, with the absorption of approx. 25 J/g protein. Under aerobic conditions, however, the first four transitions become strongly exothermic, and release a total of approx. 105 J/g protein. Solubilized and reconstituted F0F1 vesicles also exhibit different inactivation temperatures for the ATP/Pi exchange, proton pumping and ATP hydrolysis activities. The first two activities are abolished at 49.0 +/- 1.0 degrees C, but the latter at 58.0 +/- 2.0 degrees C. Differential scanning calorimetry also detects biphasic transitions of F0F1, with similar temperatures of denaturation (49.0 and 54.0 degrees C). From these and other results presented in this communication, the following is concluded. (1) A selective inactivation, by the temperature treatment, of various functions of the electron-transport chain and of the F0F1 complex can be done. (2) The ATP synthesis activity of the F0F1 complex involves either a catalytic or a regulation subunit(s) which is not essential for ATP hydrolysis and the proton translocation. This subunit is 10 degrees C less stable than the hydrolytic site. Micromolar ADP stabilizes it from thermal denaturation by 4-5 degrees C, although ADP up to millimolar concentration does not protect the hydrolytic site and the proton-translocation site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
1. The cell-membrane ATP phosphohydrolase of vegetatively grown Clostridium pasteurianum was specifically Mg2+-dependent, but demonstrated significant activity with GTP, CTP and UTP. It displayed approximate Michaelis-Menten kinetics only in the presence of certain effectors (e.g. phosphoenolpyruvate, fructose 1,6-bis-phosphate) which decreased the Km for ATP (to below 2 mM) but also V, whilst extending to pH 5.8 the effective pH range of activity of the enzyme. 2. ATP phosphohydrolase activity of the membrane ATPase (BF0F1) was inhibited by N,N'-dicyclohexylcarbodiimide, butyricin 7423, Dio-9, 4-chloro-7-nitrobenzofurazan, efrapeptin, leucinostatin and quercetin, and to a lesser degree by aurovertin and citreoviridin. The enzyme was not inhibited by oligomycin, spegazzinine, tributyl tin, triethyl tin or venturicidin. The soluble ATPase (BF1) component differed in not being inhibited by N,N'-dicyclohexylcarbodiimide, butyricin 7423 or leucinostatin. 3. The ATPase (BF0F1) complex and its soluble (BF1) component were separately purified. 4. Dodecylsulphate/polyacrylamide gel electrophoresis separated only four polypeptide components in the purified ATPase (BF0F1), with approximate molecular weights (+/- 10%) as follows: subunit a, 65 500; subunit c, 57 500; subunit da, 43 000; subunit fa, 15 000. The soluble (BF1 component contained only the three polypeptide subunits a, c and da. These were present in the BF0F1 preparation in the ratio 2 : 1 : 2; the contribution of subunit fa could not satisfactorily be quantified. 5. Subunit a was identified as the component binding 4-chloro-7-nitrobenzofurazan and subunit fa as the component binding N,N'-dicyclohexylcarbodiimide. The ATP phosphohydrolase activity of the membrane ATPase was not activated by trypsin treatment and the ATPase (BF0F1) contained no trypsin-sensitive inhibitor protein subunit. 6. Purified ATPase (BF0F1) was incorporated into artificial proteoliposomes which demonstrated ATP-dependent enhancement of 8-anilinonaphthalene-1-sulphonate fluorescence and ATP-dependent proton influx. These reactions were abolished by proton conductors (e.g. carbonylcyanide m-chlorophenylhydrazone) by valinomycin in the presence of a high external concentration of K+, or by N,N'-dicyclohexylcarbodiimide, butyricin 7423, Dio-9, 4-chloro-7-nitrobenzofurazan or leucinostatin. Oligomycin, tributyl tin, triethyl tin and venturicidin were not inhibitory. 7. When stripped of the soluble BF1 component, such ATPase-proteoliposomes demonstrated nil ATP phosphohydrolase activity and did not display ATP-dependent enhancement of 8-anilino-naphthalene-1-sulphonate fluorescence or ATP-dependent protein influx. All of these activities were restored by incubation of the BF1-depleted proteoliposomes with a purified preparation of the soluble BF1 component.  相似文献   

3.
The proton ATPase of rat liver mitochondria has been purified by a simple procedure which involves the use of the novel, zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate to solubilize the membrane-bound complex. The purified enzyme has a high, oligomycin-sensitive ATPase activity (11.3 +/- 2.9 mumol/min/mg) in the absence of added phospholipids. It shows, in four different gel electrophoretic systems, the five bands characteristic of the F1 portion of the complex and three additional Coomassie blue-stainable bands which have apparent molecular weights of 28,000, 19,000, and 13,600. A fourth Coomassie blue-stainable component of about 10,000-12,500 daltons comigrates with the delta subunit, whereas a fifth component, detectable only by absorption at 280 nm, is observed between the dye front and the 10,000-dalton species. The enzyme complex has been reconstituted into liposomal vesicles of asolectin. Under these conditions the enzyme catalyzes an ATP-Pi exchange reaction and is capable of translocating protons in an ATP-dependent manner as assayed by quenching of 9-amino-6-chloro-2-methoxyacridine. Both activities are inhibited by the addition of oligomycin, uncoupler, dicyclohexylcarbodiimide, and cadmium. At high detergent concentration, the complex appears in negative stain electron microscopy in a dispersed state. The tripartite structure is clearly visible in monomeric, dimeric, or trimeric forms of the molecule. At the low detergent concentration, the proton ATPase tends to cluster into densely packed arrays. This represents the first report of the properties of a functionally active proton ATPase solubilized and purified in the presence of a zwitterionic detergent.  相似文献   

4.
At low concentrations, diethylstilbestrol (DES) is shown to be a potent F0-directed inhibitor of the F0F1-ATPase of rat liver mitochondria. In analogy to other F0-directed inhibitors, DES inhibits both the ATPase and ATP-dependent proton-translocation activities of the purified and membrane bound enzyme. When added at low concentrations with dicyclohexylcarbodiimide (DCCD), a covalent inhibitor, DES acts synergistically to inhibit ATPase activity of the complex. At higher concentrations, DES restores DCCD-inhibited ATPase activity. However, there is no restoration of ATP-dependent proton translocation. Under these conditions DCCD remains covalently bound to the F0F1-ATPase complex and F1 remains bound to Fo. Significantly, when the F0F1-ATPase is inhibited by the Fo-directed inhibitor venturicidin rather than DCCD, DES is also able to restore ATPase activity. In contrast, DES is unable to restore ATPase activity to F0F1 preparations inhibited by the Fo-directed inhibitors oligomycin or tricyclohexyltin. However, combinations of [DES + DCCD] or [DES + venturicidin] can restore ATPase activity to F0F1 preparations inhibited by either oligomycin or tricyclohexyltin. Results presented here indicate that the F0 moiety of the rat liver mitochondrial proton ATPase contains a distinct binding site for DES. In addition, they suggest that at saturating concentrations simultaneous occupancy of the DES binding site and sites for either DCCD or venturicidin promote "uncoupled" ATP hydrolysis.  相似文献   

5.
Cassette site-directed mutagenesis was employed to generate mutations in the a subunit (uncB (a) gene) of F1F0ATP synthase. Using sequence homology with similar subunits of other F1F0ATP synthases as a guide, 20 mutations were targeted to a region of the a subunit thought to constitute part of the proton translocation mechanism. ATP-driven proton pumping activity is lost with the substitution of lys, ile, val, or glu for arginine 210. Substitution of val, leu, gln, or glu for asparagine 214 does not completely block proton conduction, however, replacement of asparagine 214 with histidine does reduce enzyme activity below that necessary for significant function. Two or three mutations were constructed in each of four nonpolar amino acids, leucine 207, leucine 211, alanine 217, and glycine 218. Certain specific mutations in these positions result in partial loss of F1F0ATP synthase activity, but only the substitution of arginine for alanine 217 reduces ATP-driven proton pumping activity to undetectable levels. It is concluded that of the six amino acids studied, only arginine 210 is an essential component of the proton translocation mechanism. Fractionation of cell-free extracts of a subunit mutation strains generally reveals normal amounts of F1 specifically bound to the particulate fraction. One possible exception is the arginine 210 to isoleucine mutation which results in somewhat elevated levels of free F1 detectable in the soluble fraction. For nearly all a subunit mutations, F1F0-mediated ATP hydrolysis activity remains sensitive to inhibition by dicyclohexylcarbodiimide in spite of the fact that the mutations block proton translocation.  相似文献   

6.
Cytochrome bc(1) complex catalyzes the reaction of electron transfer from ubiquinol to cytochrome c (or cytochrome c(2)) and couples this reaction to proton translocation across the membrane. Crystallization of the Rhodobacter sphaeroides bc(1) complex resulted in crystals containing only three core subunits. To mitigate the problem of subunit IV being dissociated from the three-subunit core complex during crystallization, we recently engineered an R. sphaeroides mutant in which the N-terminus of subunit IV was fused to the C-terminus of cytochrome c(1) with a 14-glycine linker between the two fusing subunits, and a 6-histidine tag at the C-terminus of subunit IV (c(1)-14Gly-IV-6His). The purified fusion mutant complex shows higher electron transfer activity, more structural stability, and less superoxide generation as compared to the wild-type enzyme. Preliminary crystallization attempts with this mutant complex yielded crystals containing four subunits and diffracting X-rays to 5.5? resolution.  相似文献   

7.
We studied the effect of the delta subunit of the Escherichia coli F1 ATPase on the proton permeability of the F0 proton channel synthesized and assembled in vivo. Membranes isolated from an unc deletion strain carrying a plasmid containing the genes for the F0 subunits and the delta subunit were significantly more permeable to protons than membranes isolated from the same strain carrying a plasmid containing the genes for the F0 subunits alone. This increased proton permeability could be blocked by treatment with either dicyclohexyl-carbodiimide or purified F1, both of which block proton conduction through the F0. After reconstitution with purified F1 in vitro, both membrane preparations could couple proton pumping to ATP hydrolysis. These results demonstrate that an interaction between the delta subunit and the F0 during synthesis and assembly produces a significant change in the proton permeability of the F0 proton channel.  相似文献   

8.
Oligonucleotide-directed mutagenesis was used to generate mutations in the a subunit gene (uncB) altering the glutamic acid 219 and the histidine 245 codons. Substitutions of aspartic acid, glutamine, histidine, and leucine for glutamic acid at position 219 neither alter the hydrolytic activity of membrane-bound F1 nor the association of F1 with F0. However, the efficiency of F0-mediated proton translocation was reduced to varying degrees. Replacement of glutamic acid 219 with leucine reduced the ATP-driven proton pumping activity of intact F1F0 to undetectable levels. Roughly 5% of normal activity was observed when glutamine occupied position 219. Surprisingly higher activity, approaching 20% of wild type levels, is seen when histidine replaced glutamic acid 219. The aspartic acid substitution resulted in little loss of enzyme function. Substitution of glutamic acid for histidine 245 results in a reduction to about 45% of normal proton translocation. Construction of the double mutant with substitution of histidine at position 219 and glutamic acid at position 245 yields a complex with better proton translocation than with either mutant separately. The possibility that a functionally important interaction between histidine 245 and glutamic acid 219 of the a subunit may be directly involved in the proton translocation mechanism of F1F0-ATP synthase is discussed.  相似文献   

9.
Lowry DS  Frasch WD 《Biochemistry》2005,44(19):7275-7281
Substitution of Escherichia coli F(1)F(0) ATP synthase residues betaD372 or gammaS12 with groups that are unable to form a hydrogen bond at this location decreased ATP synthase-dependent cell growth by 2 orders of magnitude, eliminated the ability of F(1)F(0) to catalyze ATPase-dependent proton pumping in inverted E. coli membranes, caused a 15-20% decrease in the coupling efficiency of the membranes as measured by the extent of succinate-dependent acridine orange fluorescence quenching, but increased soluble F(1)-ATPase activity by about 10%. Substitution of gammaK9 to eliminate the ability to form a salt bridge with betaD372 decreased soluble F(1)-ATPase activity and ATPase-driven proton pumping by 2-fold but had no effect on the proton gradient induced by addition of succinate. Mutations to eliminate the potential to form intersubunit hydrogen bonds and salt bridges between other less highly conserved residues on the gamma subunit N-terminus and the beta subunits had little effect on ATPase or ATP synthase activities. These results suggest that the betaD372-gammaK9 salt bridge contributes significantly to the rate-limiting step in ATP hydrolysis of soluble F(1) while the betaD372-gammaS12 hydrogen bond may serve as a component of an escapement mechanism for ATP synthesis in which alphabetagamma intersubunit interactions provide a means to make substrate binding a prerequisite of proton gradient-driven gamma subunit rotation.  相似文献   

10.
The a subunit of F1F0 ATP synthase contains a highly conserved region near its carboxyl terminus which is thought to be important in proton translocation. Cassette site-directed mutagenesis was used to study the roles of four conserved amino acids Gln-252, Phe-256, Leu-259, and Tyr-263. Substitution of basic amino acids at each of these four sites resulted in marked decreases in enzyme function. Cells carrying a subunit mutations Gln-252-->Lys, Phe-256-->Arg, Leu-259-->Arg, and Tyr-263-->Arg all displayed growth characteristics suggesting substantial loss of ATP synthase function. Studies of both ATP-driven proton pumping and proton permeability of stripped membranes indicated that proton translocation through F0 was affected by the mutations. Other mutations, such as the Phe-256-->Asp mutation, also resulted in reduced enzyme activity. However, more conservative amino acid substitutions generated at these same four positions produced minimal losses of F1F0 ATP synthase. The effects of mutations and, hence, the relative importance of the amino acids for enzyme function appeared to decrease with proximity to the carboxyl terminus of the a subunit. The data are most consistent with the hypothesis that the region between Gln-252 and Tyr-263 of the a subunit has an important structural role in F1F0 ATP synthase.  相似文献   

11.
During ATP hydrolysis, the gammaepsilon c10 complex (gamma and epsilon subunits and a c subunit ring formed from 10 monomers) of F0F1 ATPase (ATP synthase) rotates relative to the alpha3beta3delta ab2 complex, leading to proton transport through the interface between the a subunit and the c subunit ring. In this study, we replaced the two pertinent residues for proton transport, cAsp-61 and aArg-210 of the c and a subunits, respectively. The mutant enzymes exhibited lower ATPase activities than that of the wild type but exhibited ATP-dependent rotation in planar membranes, in which their original assemblies are maintained. The mutant enzymes were defective in proton transport, as shown previously. These results suggest that proton transport can be separated from rotation in ATP hydrolysis, although rotation ensures continuous proton transport by bringing the cAsp-61 and aArg-210 residues into the correct interacting positions.  相似文献   

12.
The transmembrane sector of the F(0)F(1) rotary ATP synthase is proposed to organize with an oligomeric ring of c subunits, which function as a rotor, interacting with two b subunits at the periphery of the ring, the b subunits functioning as a stator. In this study, cysteines were introduced into the C-terminal region of subunit c and the N-terminal region of subunit b. Cys of N2C subunit b was cross-linked with Cys at positions 74, 75, and 78 of subunit c. In each case, a maximum of 50% of the b subunit could be cross-linked to subunit c, which suggests that either only one of the two b subunits lie adjacent to the c-ring or that both b subunits interact with a single subunit c. The results support a topological arrangement of these subunits, in which the respective N- and C-terminal ends of subunits b and c extend to the periplasmic surface of the membrane and cAsp-61 lies at the center of the membrane. The cross-linking of Cys between bN2C and cV78C was shown to inhibit ATP-driven proton pumping, as would be predicted from a rotary model for ATP synthase function, but unexpectedly, cross-linking did not lead to inhibition of ATPase activity. ATP hydrolysis and proton pumping are therefore uncoupled in the cross-linked enzyme. The c subunit lying adjacent to subunit b was shown to be mobile and to exchange with c subunits that initially occupied non-neighboring positions. The movement or exchange of subunits at the position adjacent to subunit b was blocked by dicyclohexylcarbodiimide. These experiments provide a biochemical verification that the oligomeric c-ring can move with respect to the b-stator and provide further support for a rotary catalytic mechanism in the ATP synthase.  相似文献   

13.
A Weishaupt  B Kadenbach 《Biochemistry》1992,31(46):11477-11481
Bovine heart cytochrome c oxidase was gel-filtered on Sephacryl S-300 in 0.05% dodecyl maltoside and in the presence or absence of 1 M KCl. The presence of KCl selectively removed subunit VIb from the enzyme complex, resulting in about doubling of enzymatic activity and an increase of the Km for ferrocytochrome c. In contrast, the proton pumping activity of the enzyme was unchanged. The increase of activity is due to removal of subunit VIb and not of lipids, because titration with asolectin or dodecyl maltoside could not abolish the difference in activity between the 12- and 13-subunit enzyme. Attempts to reconstitute cytochrome c oxidase from its separated components were unsuccessful. It is concluded that subunit VIb suppresses the activity of the mammalian enzyme complex by interaction with the active center.  相似文献   

14.
Spinach leaf mitochondrial F0F1 ATPase has been purified and is shown to consist of twelve polypeptides. Five of the polypeptides constitute the F1 part of the enzyme. The remaining polypeptides, with molecular masses of 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa, belong to the F0 part of the enzyme. This is the first report concerning identification of the subunits of the plant mitochondrial F0. The identification of the components is achieved on the basis of the N-terminal amino acid sequence analysis and Western blot technique using monospecific antibodies against proteins characterized in other sources. The 28-kDa protein crossreacts with antibodies against the subunit of bovine heart ATPase with N-terminal Pro-Val-Pro- which corresponds to subunit F0b of Escherichia coli F0F1. Sequence analysis of the N-terminal 32 amino acids of the 23-kDa protein reveals that this protein is similar to mammalian oligomycin-sensitivity-conferring protein and corresponds to the F1 delta subunit of the chloroplast and E. coli ATPases. The 18.5-kDa protein crossreacts with antibodies against subunit 6 of the beef heart F0 and its N-terminal sequence of 14 amino acids shows a high degree of sequence similarity to the conserved regions at N-terminus of the ATPase subunits 6 from different sources. ATPase subunit 6 corresponds to subunit F0a of the E. coli enzyme. The 15-kDa protein and the 10.5-kDa protein crossreact with antibodies against F6 and the endogenous ATPase inhibitor protein of beef heart F0F1-ATPase, respectively. The 9.5-kDa protein is an N,N'-dicyclohexylcarbodiimide-binding protein corresponding to subunit F0c of the E. coli enzyme. The 8.5-kDa protein is of unknown identity. The isolated spinach mitochondrial F0F1 ATPase catalyzes oligomycin-sensitive ATPase activity of 3.5 mumol.mg-1.min-1. The enzyme catalyzes also hydrolysis of GTP (7.5 mumol.mg-1.min-1) and ITP (4.4 mumol.mg-1.min-1). Hydrolysis of ATP was stimulated fivefold in the presence of amphiphilic detergents, however the hydrolysis of other nucleotides could not be stimulated by these agents. These results show that the plant mitochondrial F0F1 ATPase complex differs in composition from the other mitochondrial, chloroplast and bacterial ATPases. The enzyme is, however, more closely related to the yeast mitochondrial ATPase and to the animal mitochondrial ATPase than to the chloroplast enzyme. The plant mitochondrial enzyme, however, exhibits catalytic properties which are characteristic for the chloroplast enzyme.  相似文献   

15.
The F1F0-ATP synthase from the alkaliphilic Bacillus firmus OF4 was purified in a reconstitutively active form, in good yield and with a high specific ATPase activity when appropriately activated. The purification procedure involved octyl glucoside extraction of washed membrane vesicles in the presence of 20% glycerol and asolectin followed by ammonium sulfate fractionation and sucrose density gradient centrifugation. The purified preparation was resolved into seven bands by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, corresponding to the five F1 subunits, alpha, beta, gamma, delta, and epsilon, and to the b and c subunits of the F0. Two-dimensional sodium dodecyl sulfate-poly-acrylamide gel analysis revealed a candidate for the alpha subunit of F0. The MgATPase activity of B. firmus OF4 F1F0 was barely detectable but could be stimulated, optimally more than 100-fold, by sulfite, methanol, and octyl thioglucoside. The enzyme was inhibited by N,N'-dicyclohexylcarbodiimide and sodium azide, but not by aurovertin, an inhibitor of the F1 from Escherichia coli. The F1F0 reconstituted into proteoliposomes catalyzed ATPase activity, ATP-Pi exchange, and ATP-dependent delta pH and delta psi formation. ATP hydrolysis was stimulated by protonophores while the other activities were abolished by protonophores. These activities were neither dependent on added sodium ions nor significantly affected by them. F1F0 proteoliposomes made from crude octyl glucoside extracts that also contained the Na+/H+ antiporter were shown to catalyze ATP-dependent Na+ uptake that was completely sensitive to carbonyl cyanide m-chlorophenyl-hydrazone; Na+ uptake activity was absent in proteoliposomes containing more purified F1F0 but lacking the Na+/H+ antiporter. These data show that the F1F0 translocates protons and does not substitute Na+ for H+ in energy coupling.  相似文献   

16.
The conserved Pro43 residue of the uncE protein (subunit c) of the Escherichia coli F1F0-ATPase was changed to Ser or Ala by oligonucleotide-directed mutagenesis, and the mutations were incorporated into the chromosome. The resultant mutant strains were capable of oxidative phosphorylation as indicated by their ability to grow on succinate and had growth yields on glucose that were 80-90% of wild type. Membrane vesicles from the mutants were slightly less efficient than wild type vesicles in ATP-driven proton pumping as indicated by ATP-dependent quenching of quinacrine fluorescence. The decreased quenching response was not due to increased H+ leakiness of the mutant membranes or to loss of F1-ATPase activity from the membrane. These results indicate that the mutant F1F0-ATPases are defective in coupling ATP hydrolysis to H+ translocation. The membrane ATPase activity of the mutants was inhibited less by dicyclohexylcarbodiimide than that of wild type. The decrease in sensitivity to inhibition by dicyclohexylcarbodiimide was caused primarily by dissociation of the F1-ATPase from the mutant F0 in the ATPase assay mixture. These results support the idea that Pro43, and neighboring conserved polar residues play an important role in the binding and functional coupling of F1 to F0. Although a Pro residue is found at position 43 in all species of subunit c studied, surprisingly, it is not absolutely essential to function.  相似文献   

17.
F0F1-ATPase has been isolated from the marine alkali-resistant bacterium Vibrio alginolyticus. The enzyme subunits cross-reacted with antibodies against subunits alpha, beta, gamma, epsilon, and b of E. coli ATPase. The purified ATPase was reconstituted into liposomes effecting an ATP-dependent uptake of H+. Proton transport was inhibited by the ATPase blockers DCCD, triphenyltin, and venturicidin. Na+ ions had no effect on ATP-dependent proton transport. No ATP-dependent transport of Na+ was detected in proteoliposomes.  相似文献   

18.
ATP synthase (F0F1) transforms an electrochemical proton gradient into chemical energy (ATP) through the rotation of a subunit assembly. It has been suggested that a complex of the gamma subunit and c ring (c(10-14)) of F0F1 could rotate together during ATP hydrolysis and synthesis (Sambongi, Y., Iko, Y., Tanabe, M., Omote, H., Iwamoto-Kihara, A., Ueda, I., Yanagida, T., Wada, Y., and Futai, M. (1999) Science 286, 1722-1724). We observed that the rotation of the c ring with the cI28T mutation (c subunit cIle-28 replaced by Thr) was less sensitive to venturicidin than that of the wild type, consistent with the antibiotic effect on the cI28T mutant and wild-type ATPase activities (Fillingame, R. H., Oldenburg, M., and Fraga, D. (1991) J. Biol. Chem. 266, 20934-20939). Furthermore, we engineered F0F1 to see the alpha(3)beta(3) hexamer rotation; a biotin tag was introduced into the alpha or beta subunit, and a His tag was introduced into the c subunit. The engineered enzymes could be purified by metal affinity chromatography and density gradient centrifugation. They were immobilized on a glass surface through the c subunit, and an actin filament was connected to the alpha or beta subunit. The filament rotated upon the addition of ATP and generated essentially the same frictional torque as one connected to the c ring. These results indicate that the gammaepsilonc(10-14) complex is a mechanical unit of the enzyme and that it can be used as a rotor or a stator experimentally, depending on the subunit immobilized.  相似文献   

19.
The addition of a His6 tag to the N terminus of subunit a of the F0 complex of the Escherichia coli ATP synthase allowed the purification of an ab2 subcomplex after solubilization of membranes with n-dodecyl-beta-d-maltoside and subsequent nickel-nitrilotriacetic acid affinity chromatography. After co-reconstitution of the ab2 subcomplex with purified subunit c, passive proton translocation rates as well as coupled ATPase activities after binding of F1 were measured that were comparable with those of wild type F0. The interaction between subunits a and b, which has been shown to be stoichiometric and functional, is not triggered by any cross-linking reagent and therefore reflects subunit interactions occurring within the F0 complex in vivo.  相似文献   

20.
W Laubinger  P Dimroth 《Biochemistry》1989,28(18):7194-7198
The purified ATPase (F1F0) of Propionigenium modestum has its pH optimum at pH 7.0 or at pH 6.0 in the presence or absence of 5 mM NaCl, respectively. The activation by 5 mM NaCl was 12-fold at pH 7.0, 3.5-fold at pH 6.0, and 1.5-fold at pH 5.0. In addition to its function as a primary Na+ pump, the ATPase was capable of pumping protons. This activity was demonstrated with reconstituted proteoliposomes by the ATP-dependent quenching of the fluorescence of 9-amino-6-chloro-2-methoxyacridine. No delta pH was formed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone or by blocking the ATPase with dicyclohexylcarbodiimide. In the presence of valinomycin and K+, the delta pH increased, in accord with the operation of an electrogenic proton pump. The proton pump was only operative at low Na+ concentrations (less than 1 mM), and its activity increased as the Na+ concentration decreased. Parallel to the decrease of H+ pumping, the velocity of the Na+ transport increased about 6-fold from 0.1 to 4 mM NaCl, indicating a switch from H+ to Na+ pumping, as the Na+ concentration increases. Due to proton leaks in the proteoliposomal membranes, fluorescence quenching was released after blocking the ATPase with dicyclohexylcarbodiimide, by trapping residual ATP with glucose and hexokinase, or by the Na+-induced conversion of the proton pump onto a Na+ pump. Amiloride, an inhibitor of various Na+-coupled transport systems, was without effect on the kinetics of Na+ transport by the P. modestum ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号