首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 Ninety four doubled-haploid (DH) lines obtained from the F1 between Perennial, a cucumber mosaic virus (CMV)-partially resistant Capsicum annuum line, and Yolo Wonder, a CMV-susceptible C. annuum line, were analysed with 138 markers including mostly RFLPs and RAPDs. Clustering of RAPD markers was observed on five linkage groups of the intraspecific linkage map. These clusters could correspond to the centromeric regions of pepper chromosomes. The same progenies were evaluated for restriction of CMV installation in pepper cells in order to map quantitative trait loci (QTLs) controlling CMV resistance. This component of partial resistance to CMV was quantitatively assessed using a CMV strain that induced necrotic local lesions on the inoculated leaves. The number of local lesions gave an estimation of the density of the virus-infection sites. Genotypic variance among the DH lines was highly significant for the number of local lesions, and heritability was estimated to be 0.94. Using both analysis of variance and non-parametric tests, three genomic regions significantly affecting CMV resistance were detected on chromosomes Noir, Pourpre and linkage group 3, together explaining 57% of the phenotypic variation. A digenic epistasis between one locus that controlled significant trait variation and a second locus that by itself had no demonstrable effect on the trait was found to have an effect on CMV resistance. For each QTL, the allele from Perennial was associated with an increased resistance. Implications of QTL mapping in marker-based breeding for CMV resistance are discussed. Received: 16 September 1996  相似文献   

2.
Cucumber mosaic virus (CMV) is a commonly occurring plant virus that causes severe damage in many crops, including the diploid crop species tomato and pepper (Lycopersicon spp. and Capsicum spp., respectively) of the family Solanaceae, but it is neither common nor economically important in cultivated potatoes (Solanum tuberosum; Solanaceae). Resistance to CMV was examined in two diploid (2n=2x=24), highly heterozygous potato populations (Solanum spp.; Solanaceae) consisting of 76 and 126 progeny. Resistance to long-distance transport of CMV controlled by one locus with a major effect and functional at a low temperature (18°C) but overcome at a high temperature (28°C) was identified in one population. In the other population, resistance was controlled by two loci with major effects. In both populations, additional genes with minor effects were probably also involved. Induced resistance to CMV, associated with autonomously developing cell death lesions (Anl) previously not known in potato, was expressed in one parental line. The mechanisms of resistance to CMV may be associated with an inherent or developmental lack of host factors required for compatible CMV-host interactions in viral long distance transport and/or inability of CMV to efficiently suppress the host gene silencing mechanism in potatoes. Polyploidy (gene dose) and high heterozygosity (multiple homologous genes) of potato cultivars may be significant in conferring the durable resistance to CMV. These data provide explanations why CMV is not common and economically important in cultivated potatoes, even though CMV commonly occurs in other crops, weeds and wild plants in potato production areas. Received: 11 February 1999 / Accepted: 25 March 1999  相似文献   

3.
QTL analysis for resistance to cucumber mosaic virus (CMV) was performed in an intraspecific Capsicum annuum population. A total of 180 F3 families were derived from a cross between the susceptible bell-type cultivar Maor and the resistant small-fruited Indian line Perennial and inoculated with CMV in three experiments carried out in the USA and Israel using two virus isolates. Mostly RFLP and AFLP markers were used to construct the genetic map, and interval analysis was used for QTL detection. Four QTL were significantly associated with resistance to CMV. Two digenic interactions involving markers with and without an individual effect on CMV resistance were also detected. The QTL controlling the largest percentage (16–33%) of the observed phenotypic variation (cmv11.1) was detected in all three experiments and was also involved in one of the digenic interactions. This QTL is linked to the L locus that confers resistance to tobacco mosaic virus (TMV), confirming earlier anecdotal observations of an association between resistance to CMV and susceptibility to TMV in Perennial. An advanced backcross breeding line from an unrelated population, 3990, selected for resistance to CMV was analyzed for markers covering the genome, allowing the identification of genomic regions introgressed from Perennial. Four of these introgressions included regions associated with QTL for CMV resistance. Markers in two genomic regions that were identified as linked to QTL for CMV resistance were also linked to QTL for fruit weight, confirming additional breeding observations of an association between resistance to CMV originating from Perennial and small fruit weight. Received: 17 July 2000 / Accepted: 16 October 2000  相似文献   

4.
5.
Transgenic pepper plants coexpressing coat proteins (CPs) of cucumber mosaic virus (CMV-Kor) and tomato mosaic virus (ToMV) were produced by Agrobacterium-mediated transformation. To facilitate selection for positive transformants in transgenic peppers carrying an L gene, we developed a simple and effective screening procedure using hypersensitive response upon ToMV challenge inoculation. In this procedure, positive transformants could be clearly differentiated from the nontransformed plants. Transgenic pepper plants expressing the CP genes of both viruses were tested for resistance against CMV-Kor and pepper mild mottle virus (PMMV). In most transgenic plants, viral propagation was substantially retarded when compared to the nontransgenic plants. These experiments demonstrate that our transgenic pepper plants might be a useful marker system for the transgene screening and useful for classical breeding programs of developing virus resistant hot pepper plants.  相似文献   

6.
Tobacco plants expressing a transgene encoding the coat protein (CP) of a subgroup I strain of cucumber mosaic cucumovirus (CMV), I17F, were not resistant to strains of either subgroup I or II. In contrast, the expression of the CP of a subgroup II strain, R, conferred substantial resistance, but only towards strains of the same subgroup. When protection was observed, the levels of resistance were similar when plants were inoculated with either virions or viral RNA, but resistance was more effective when plants were inoculated with viruliferous aphids. Resistance was not dependent on inoculum strength and was expressed as a recovery phenotype not yet described for plants expressing a CMV CP gene. Recovery could be observed either early in infection (less than one week after inoculation) or later (4 to 5 weeks after inoculation). In plants showing early recovery, mild symptoms were observed on the inoculated leaves, and in some cases symptoms developed on certain lower systemically infected leaves, but the upper leaves were symptomless and virus-free. Late recovery corresponded to the absence of both symptoms and virus in the upper leaves of plants that were previously fully infected. Northern blot analyses of resistant plants suggested that a gene silencing mechanism was not involved in the resistance observed.  相似文献   

7.
Reactions to two subgroup I isolates (Fny-CMV and Pf-CMV) and two subgroup II isolates (A9-CMV and LS-CMV) of cucumber mosaic virus (CMV) were studied in three non tuber-bearing wild potato species (Solanum spp.) of the series Etuberosa, and in two tuber-bearing interspecific potato hybrids and four potato cultivars using graft-inoculation. Three classes of phenotypic reactions (susceptible, hypersensitive, extreme resistance) were observed in the tuber-bearing genotypes. Susceptible genotypes developed mosaic or severe mosaic with leaf malformation and had high CMV titres. Hypersensitive genotypes developed either top necrosis or vein necrosis and/or necrotic spots on apical leaves, and had low CMV titres. Extremely resistant genotypes had no symptoms and no CMV was detected. The hybrid 87HW13.7 (S. tuberosum×S. multidissectum) developed top necrosis specific to infection with Fny-CMV. The hybrid ‘A6’ (S. demissum×S. tuberosum cv. Aquila) was hypersensitive to all CMV isolates tested. Extreme resistance was not functional against all CMV isolates. Neither hypersensitivity nor extreme resistance were related to the CMV subgroup.  相似文献   

8.
付东亚  陈集双 《生命科学》2002,14(5):296-298
根据病原物介导的对自身抗性的理论,大量开展了将CMV基因组的单个或多个片断转入植物体内的研究,从而使该植株能够抵抗或延迟受CMV的侵染,CP,RP,MP基因是CMV基因组的重要组成部分,用来转化植株取得了不同程度的抗性效果,另外有些CMV株中存在着起致弱作用的卫星RNA,直接对植株接种含卫星RNA的CMV弱毒或用卫星RNA的cDNA转化植株都会减轻CMV强毒对该植株的侵害,CMV基因组不同组分进入植物体内后,它们对植株产生保护作用的机理不同,文中分别加以阐述。  相似文献   

9.
For the production of broad commercial resistance to cucumber mosaic virus (CMV) infection, tomato plants were transformed with a combination of two coat protein (CP) genes, representing both subgroups of CMV. The CP genes were cloned from the CMV-D strain and Italian CMV isolates (CMV-22 of subgroup I and CMV-PG of subgroup II) which have been shown to produce severe disease symptoms. Four plant transformation vectors were constructed: pMON18774 and pMON18775 (CMV-D CP), pMON18831 (CMV-PG CP) and pMON18833 (CMV-22 CP and CMV-PG CP). Transformed R0 plants were produced and lines were selected based on the combination of three traits: CMV CP expression at the R0 stage, resistance to CMV (subgroup I and/or II) infection in growth chamber tests in R1 expressing plants, and single transgene copy, based on R1 segregation. The results indicate that all four vector constructs generated plants with extremely high resistant to CMV infection. The single and double gene vector construct produced plants with broad resistance against strains of CMV from both subgroups I and II at high frequency. The engineered resistance is of practical value and will be applied for major Italian tomato varieties. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Capsicum annuum L. has resistance to root-knot nematodes (RKN) (Meloidogyne spp.), severe polyphagous pests that occur world-wide. Several single dominant genes confer this resistance. Some are highly specific, whereas others are effective against a wide range of species. The spectrum of resistance to eight clonal RKN populations of the major Meloidogyne species, M. arenaria (2 populations), M. incognita (2 populations), M. javanica (1 population), and M. hapla (3 populations) was studied using eight lines of Capsicum annuum. Host susceptibility was determined by counting the egg masses (EM) on the roots. Plants were classified into resistant (R; EM ≤ 5) or susceptible (H; EM >5) classes. The french cultivar Doux Long des Landes was susceptible to all nematodes tested. The other seven pepper lines were highly resistant to M. arenaria, M. javanica and one population of M. hapla. Variability in resistance was observed for the other two populations of M. hapla. Only lines PM687, PM217, Criollo de Morelos 334 and Yolo NR were resistant to M. incognita. To investigate the genetic basis of resistance in the highly resistant line PM687, the resistance of two progenies was tested with the two populations of M. incognita: 118 doubled-haploid (DH) lines obtained by androgenesis from F1 hybrids of the cross between PM687 and the susceptible cultivar Yolo Wonder, and 163 F2 progenies. For both nematodes populations, the segregation patterns 69 R / 49 S for DH lines and 163 R / 45 S for F2 progenies were obtained at 22°C and at high temperatures (32°C and 42°C). The presence of a single dominant gene that totally prevented multiplication of M. incognita was thus confirmed and its stability at high temperature was demonstrated. This study confirmed the value of C. annuum as a source of complete spectrum resistance to the major RKN. Received: 2 July 1998 / Accepted: 11 March 1999  相似文献   

11.
We previously established a system of in vitro regeneration and Agrobacterium-mediated transformation for hot pepper plants. The level of protection against cucumber mosaic virus in the progeny of the transgenic hot pepper plants that express cucumber mosaic virus (CMV) satellite RNA was investigated. The transgenic hot pepper plants were self-fertilized, and their progeny were tested for stable inheritance and expression of the cDNA of CMV satellite RNA. Polymerase chain reaction and RNA gel blot analyses showed that the introduced gene was stably transmitted and expressed in the progeny. Symptom attenuation in the offspring was confirmed upon inoculation with CMV-Y or CMV-Korea (CMV-Kor) strains. Received: 30 September 1996 / Revision received: 5 May 1997 / Accepted: 22 May 1997  相似文献   

12.
A previous survey on pepper lines (Capsicum annuum L.) indicated that a susceptible cultivar, Yolo Wonder, reacted to cucumber mosaic virus (CMV) by producing a systemic yellow mosaic. By contrast, CMV caused no symptoms on lines Perennial and Vania. The virus is recoverable from the uninoculated leaves of Perennial, while in Vania CMV is restricted to the inoculated leaves. To interpret these phenomena, a comparative study on CMV multiplication rates, yield, specific infectivity and relative proportion of RNAs was made in the inoculated leaves of the three pepper varieties. The rate of CMV multiplication, as estimated by the double antibody sandwich form of enzyme-linked immu-nosorbent assay, was lower in Perennial than in Vania or Yolo Wonder. The yield of virus purified from Perennial was very low when compared with Vania or Yolo Wonder. The specific infectivity of the virus extracted from Perennial was less than that from Vania or Yolo Wonder. These results suggest that Perennial is resistant to CMV multiplication, while restriction of the virus in inoculated leaves of Vania is not due to the inhibition of the virus replication. However, polyacrylamide gel electrophoresis revealed that the RNA profiles of CMV purified from the three pepper lines were similar.  相似文献   

13.
[目的]筛选出对烟草黄瓜花叶病毒病有良好抑制作用的多糖并探索其对烟叶防御酶活性的影响.[方法]采用半叶法,测定了安络小皮伞多糖等21种真菌多糖在枯斑三生烟上对CMV的钝化、预防及治疗效果,并测定了抗病毒多糖处理后普通烟NC-89体内防御酶的变化.[结果]安络小皮伞多糖对CMV具有较好的钝化及预防效果,其200倍液与等量供试病毒液混合30 min后接种,钝化效果为83.41%;喷施安络小皮伞多糖200倍液24 h后接毒处理,预防效果可高达93.15%.安络小皮伞多糖对CMV防治机理的研究表明,多糖处理后烟草相关防御酶POD、PAL和PPO活性增强,其中喷施安络小皮伞多糖24 h后接毒处理的酶活增加最为显著,该处理烟苗的POD、PAL和PPO的酶活峰值分别可增加至对照的2.74、3.45和2.82倍.[结论]安络小皮伞多糖通过增强烟草体内防御酶活性而提高烟草对烟草黄瓜花叶病毒病的抗性.  相似文献   

14.
15.
 Hyperhydricity in regenerated pepper plants was monitored by the induction of the ER-luminal resident protein, as observed by immunoblotting. Immunoblotting of total protein using an anti-soybean BiP serum indicated that the induction and accumulation of an 80-kDa protein was related to BiP (Binding protein), a 78-kDa ER-resident molecular chaperone. The anti-BiP serum cross-reacted with an 80-kDa protein which was significantly induced by hyperhydricity. Based on similar molecular weight and immunological reactivity we concluded that the 80-kDa protein induced in hyperhydric plants is a BiP homologue. The ultrastructural organisation of leaves in non-hyperhydric and hyperhydric pepper (Capsicum annuum L.) plants was investigated with the aim of identifying the subcellular changes associated with this phenomenon. In non-hyperhydric leaves the chloroplasts of the palisade cells had normally developed thylakoids and grana and a low accumulation or absence of starch grains and plastoglobules. In the hyperhydric plants, however, the chloroplasts exhibited thylakoid disorganisation, low grana number, an accumulation of large starch grains and a low accumulation or absence of plastoglobules. Although the structure of mitochondria and peroxisomes did not change in hyperhydric plants, the number of peroxisomes did increase. Received: 23 July 1998 / Revision received: 26 February 1999 / Accepted: 17 March 1999  相似文献   

16.
By using a high-density AFLP marker linkage map, six QTLs for partial resistance to barley leaf rust (Puccinia hordei) isolate 1.2.1. have been identified in the RIL offspring of a cross between the partially resistant cultivar ’Vada’ and the susceptible line L94. Three QTLs were effective at the seedling stage, and five QTLs were effective at the adult plant stage. To study possible isolate specificity of the resistance, seedlings and adult plants of the 103 RILs from the cross L94×’Vada’ were also inoculated with another leaf rust isolate, isolate 24. In addition to the two QTLs that were effective against isolate 1.2.1. at the seedling stage, an additional QTL for seedling resistance to isolate 24 was identified on the long arm of chromosome 7. Of the eight detected QTLs effective at the adult plant stage, three were effective in both isolates and five were effective in only one of the two isolates. Only one QTL had a substantial effect at both the seedling and the adult plant stages. The expression of the other QTLs was developmental-stage specific. The isolate specificity of the QTLs supports the hypothesis of Parlevliet and Zadoks (1977) that partial resistance may be based on a minor-gene-for-minor-gene interaction. Received: 16 February 1999 / Accepted: 20 February 1999  相似文献   

17.
 Sources of resistance to several potyviruses have been identified and characterized within the cucumber (Cucumis sativus L.) germplasm. Resistance to zucchini yellow mosaic virus (ZYMV) is present in inbred lines derived from the Dutch hybrid Dina (Dina-1) and from the Chinese cultivar ‘Taichung Mou Gua’ (TMG-1). Tests of allelism indicated that the genes for resistance to ZYMV in TMG-1 and Dina-1 are at the same locus; however, the two genotypes exhibited different phenotypes in response to cotyledon inoculation with ZYMV. Dina-1 exhibited a distinct veinal chlorosis and accumulation of virus limited to the first and/or second true leaves, while TMG-1 remained symptom-free and did not accumulate virus. The distinct veinal chlorosis phenotype in Dina-1 was dominant to the symptom-free phenotype in TMG-1 and was shown not to be due to a separate gene. These results indicate that a series of alleles differing in effectiveness and dominance relationships occurs at the zym locus such that Zym>zym Dina>zym TMG-1. In addition to ZYMV resistance, TMG-1 is also resistant to watermelon mosaic virus (WMV), the watermelon strain of papaya ringspot virus (PRSV-W) and the Moroccan watermelon mosaic virus (MWMV); the WMV and MWMV resistances are at the same locus, or tightly linked to the zym locus. Dina-1 also was found to be resistant to PRSV-W and MWMV. The gene for MWMV resistance in Dina-1 appeared to be at the same locus or tightly linked (<1% recombination) to the gene for ZYMV resistance. In contrast to the response to ZYMV inoculation, Dina-1 does not exhibit distinct veinal chlorosis when inoculated with PRSV-W or MWMV. Collectively, these observations suggest that the gene(s) conferring resistance to ZYMV, WMV, and MWMV may be part of a gene cluster for potyvirus resistance in cucumber. Received: 12 November 1996 / Accepted: 25 April 1997  相似文献   

18.
Satellite RNAs (sat-RNAs) are small molecular parasites associated with a number of plant RNA viruses. The cucumber mosaic virus (CMV) sat-RNAs are ca. 335 nucleotides and have evolved to produce a large number of closely related sat-RNAs. Different cucumoviruses can act as helper viruses in the amplification of CMV sat-RNAs. We have found that different helper viruses show a preference for a particular sat-RNA in a mixed infection. In this study the specificity of WL47 sat-RNA amplification by LS-CMV and of D4 sat-RNA amplification by tomato aspermy virus in mixed infections was examined. Recombinant cDNA clones of D4 sat-RNA and WL47 sat-RNA were used to map the sat-RNA sequences responsible for the helper virus selection of a specific sat-RNA for amplification.Correspondence to: M.J. Roossinck  相似文献   

19.
Cucumber mosaic virus (CMV) infects a wide variety of crop plants and in tomato (Lycopersicon esculentum Mill.) causes significant economic losses in many growing regions, particularly the Mediterranean. The objective of the present study was to identify the number and map locations of genes controlling resistance to CMV in breeding lines (BC1–inbreds) derived from the related wild species L. chilense. These lines also carried the gene Tm-2 a for resistance to ToMV, which facilitated the interpretation of disease symptoms. The segregation for CMV resistance in the BC2F1 and BC2F2 generations, following mechanical inoculation with subgroup-I isolates, was consistent with expectations for a single dominant gene, for which the symbol Cmr (cucumber mosaic resistance) was given. Resistant and susceptible BC1-inbreds were analyzed with RFLP and isozyme markers to identify genomic regions introgressed from L. chilense. The only L. chilense-specific markers found were on chromosome 12; some resistant lines contained a single introgression comprising the entire short arm and part of the long arm of this chromosome, while others contained a recombinant derivative of this introgression. The chromosome 12 markers were significantly associated with CMV resistance in both qualitative and quantitative models of inheritance. The qualitative analysis, however, demonstrated that CMV resistance was not expressed as a reliable monogenic character, suggesting a lack of penetrance, significant environmental effects, or the existence of additional (undetected) resistance factors. In the quantitative analysis, the marker interval TG68 – CT79 showed the most significant association with CMV resistance. No association between CMV resistance and the Tm-2 a gene was observed. These breeding lines are potentially useful sources of CMV resistance for tomato improvement, in which context knowledge of the map location of Cmr should accelerate introgression by marker-assisted selection. Received: 9 August 1999 / Accepted: 22 December 1999  相似文献   

20.
South American leaf blight (SALB) is a disease of the rubber tree caused by the fungus Microcyclus ulei. Quantitative trait loci (QTLs) for resistance were mapped using 195 F1 progeny individuals derived from the cross between a susceptible cultivated clone, PB260, and a resistant clone, RO38, derived from interspecific hybridization. The resistance level of the progeny individuals was evaluated in controlled conditions. The reaction type (RT) and the lesion diameter (LD) were measured on immature leaves after artificial inoculation of the fungus. Five different strains of the fungus were used, all highly sporulating on PB260. Among those, four did not sporulate and one sporulated partially on RO38. Both pseudo-testcross parental genetic maps and the consensus map were constructed. The search for QTLs was performed using the Kruskal-Wallis marker-by-marker test and the Interval-Mapping method for the three maps. Eight QTLs for resistance were identified on the RO38 map. Only one QTL was detected on the PB260 map. The analysis of the F1 consensus map confirmed results obtained with the parental maps. A common QTL was detected for resistance to the five strains for both RT and LD. Two QTLs were common for complete resistance to four strains, for RT and LD respectively. Resistance determinism for complete and partial resistance, and perspectives for breeding for durable resistance to SALB are discussed. Received: 1 August 1999 / Accepted: 27 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号