首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This study is aimed at elucidating the mechanism of paradoxical rise in plasma ACTH levels in response to glucocorticoids, observed by several authors in bilaterally adrenalectomized patients with Cushing's disease. Six control subjects and fourteen patients bilaterally adrenalectomized for Cushing's disease were given a dose of 200 mg hydrocortisone sodium succinate by 3-5 mm i.v. injection. Plasma ACTH (in 6 patients), serum cortisol, growth hormone (GH) and insulin and blood glucose levels were estimated at 0, 30, 60, 90, and 120 minutes. The administration of hydrocortisone significantly suppressed plasma ACTH levels only at 60 min. In one case a slight rise in ACTH level during the test was observed. A significant fall in blood glucose levels was found only in the adrenalectomized patients. No significant changes in serum insulin and GH levels were noted. The possible mechanisms are discussed, especially the potential role of transient glucose deficiency in the pathophysiology of plasma ACTH increase in response to hydrocortisone in the bilaterally adrenalectomized patients.  相似文献   

2.
The present experiment was designed to study the action of ACTH1-24 on insulin secretion during the circadian cycle in normal rabbits and to provide evidence that ACTH1-24 has an extra-adrenal effect on this secretion. In normal rabbits intravenous administration of three doses of ACTH1-24 (1, 10, 100 micrograms/kg) at 10 a. m. increased plasma insulin levels. Hyperglycemia only occurred with doses of 10 and 100 micrograms/kg. A maximum insulin response was already obtained at 1 micrograms/kg. The same experiment performed at 12 p. m. also induced hyperinsulinemia which was only noted at 10 and 100 micrograms/kg; hyperglycemia was only observed after stimulation by the highest dose (100 micrograms/kg). ACTH was therefore more effective during the day; however, at 12 p. m. plasma insulin levels were the highest, but only with the maximum dose of ACTH (100 micrograms/kg). The effect of ACTH1-24 was evaluated throughout the day on normal and adrenalectomized rabbits. In normal animals injection of ACTH1-24 increased plasma glucose and insulin levels both together. In the contrary, in rabbits deprived of adrenal glands, ACTH1-24 induced high insulinemia along with hypoglycemia. We could, therefore, reasonably conclude that ACTH stimulates directly the pancreatic secretion of insulin.  相似文献   

3.
The present investigation was undertaken to determine the content of ACTH, glucose and lactate in plasma of 4 pigs (body weight 82--118 kg) during a circadian period and during an insulin hypoglycemia test using 1 IU/kg in 3 pigs (body weight 96--118 kg) and 4 pigs (body weight 20--30 kg). The plasma ACTH level at rest was 57 +/- 27 pg/ml (Mean +/- SE) for all samples in all animals during a circadian period. Significant diurnal changes were not observed. During insulin-induced hypoglycaemia plasma ACTH rose from a mean (+/- SE) basal level of 35 +/- 15 to a maximum of 673 +/- 100 pg/ml at 60 min in heavier pigs and in lighter pigs to 395 +/- 153 at 30 min and 403 +/- 145 pg/ml at 120 min. Initial ACTH responses were evident 30 min (heavier pigs) and between 0 and 15 min (lighter pigs) after insulin administration. Plasma glucose decreased from a mean (+/- SE) basal level of 80 +/- 10 to a minimum of 6 +/- 1 mg/100 ml at 60 min (heavier pigs) and from 88 +/- 3 to 16 +/- 4 mg/100 ml at 60 min (lighter pigs). After its minimum level the glucose concentration showed a slower increment in the heavier pigs as compared to lighter animals. Plasma lactate rose from a mean (+/- SE) basal level of 19 +/- 10 to a maximum of 76 +/- 42 mg/100 ml at 120 min (heavier pigs) and from 12 +/- 3 to 37 +/- 16 mg/100 ml at 150 min (lighter group). In accordance with the changes in the blood plasma levels of ACTH, glucose and lactate, the clinical symptoms of hypoglycaemia in heavier pigs were more intensive.  相似文献   

4.
Previously, low stepwise infusions of cortisol in resting adrenalectomized dogs (plateaux less than or equal to 6 micrograms/dL) were shown to reduce ACTH secretion only after 20 min. In the present study, large, steep-sloped cortisol signals were used to try to evoke faster feedback. Adrenalectomized male mongrel dogs were maintained on exogenous steroids until 48 h before the experiment. Of the 23 experiments on 15 dogs (under light pentobarbital anesthesia), 12 were on resting dogs, 7 on dogs stressed by variable insulin infusion (keeping plasma glucose at 18-40 mg/dL), and 4 stressed as above but with 4 h of low cortisol infusion (plasma congruent to 5 micrograms/dL) before applying the feedback signal. After a 50-min control period, a 30-min feedback period was initiated by one of two i.v. cortisol signals: (a) injection of 0.3 mg/kg or (b) infusion of 46 micrograms kg-1 min-1. Both raised plasma cortisol above physiological limits (within 2 and 6 min, respectively). In each experiment, 23 timed venous blood samples were assayed for plasma ACTH and cortisol. ACTH secretion rates were calculated continuously using a validated single-compartment method. Results from both types of cortisol signals were indistinguishable, and were thus pooled. In the unstressed dogs, control-period ACTH secretion of 0.97 +/- 0.12 mU kg-1 min-1 showed no significant decline due to the feedback signal for 20.3 +/- 1.4 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Maximal dynamic exercise results in a postexercise hyperglycemia in healthy young subjects. We investigated the influence of maximal exercise on glucoregulation in non-insulin-dependent diabetic subjects (NIDDM). Seven NIDDM and seven healthy control males bicycled 7 min at 60% of their maximal O2 consumption (VO2max), 3 min at 100% VO2max, and 2 min at 110% VO2max. In both groups, glucose production (Ra) increased more with exercise than did glucose uptake (Rd) and, accordingly, plasma glucose increased. However, in NIDDM subjects the increase in Ra was hastened and Rd inhibited compared with controls, so the increase in glucose occurred earlier and was greater [147 +/- 21 to 169 +/- 19 (30 min postexercise) vs. 90 +/- 4 to 100 +/- 5 (SE) mg/dl (10 min postexercise), P less than 0.05]. Glucose levels remained elevated for greater than 60 min postexercise in both groups. Glucose clearance increased during exercise but decreased postexercise to or below (NIDDM, P less than 0.05) basal levels, despite increased insulin levels (P less than 0.05). Plasma epinephrine and glucagon responses to exercise were higher in NIDDM than in control subjects (P less than 0.05). By use of the insulin clamp technique at 40 microU.m-2.min-1 of insulin with plasma glucose maintained at basal levels, glucose disposal in NIDDM subjects, but not in controls, was enhanced 24 h after exercise. It is concluded that, because of exaggerated counter-regulatory hormonal responses, maximal dynamic exercise results in a 60-min period of postexercise hyperglycemia and hyperinsulinemia in NIDDM. However, this event is followed by a period of increased insulin effect on Rd that is present 24 h after exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effect on glucose homeostasis of a transient elevation of plasma growth hormone (GH) and cortisol was studied over 6 h in 14 male patients with insulin-dependent diabetes mellitus (IDDM) by using an i.v. somatostatin (100 micrograms/h) - insulin (0.4 mU/kg/min) glucose (3 mg/kg/min) - infusion test (SIGIT). GH (20 mU/kg) was given as a 60 min i.v. infusion during the initial SIGIT period raising the plasma GH level to about 40 micrograms/l, and returning to low basal within 3 h. ACTH (0.1 mg) was given as an i.v. bolus injection at the start of the SIGIT, resulting in plasma cortisol peak values of about 900 nmol/l within 2-3 h. GH raised blood glucose after a lag of 4 h while ACTH alone had no effect. However, ACTH added to GH enhanced the diabetogenic effect of GH. It is concluded that an episodic increase in circulating GH-cortisol, resembling the responses of these hormones to an insulin-induced hypoglycemia, exerts a diabetogenic effect in IDDM-patients not deprived of insulin. While GH is essential in this respect the diabetogenic effect of cortisol is evident only in conjunction with GH.  相似文献   

7.
Tolbutamide significantly decreased fasting plasma gastrin after 5 min of intravenous infusion in patients with atrophic gastritis, duodenal ulcer, or insulin-dependent diabetes mellitus (IDDM) as well as in healthy volunteers. Increased plasma insulin and decreased blood glucose were observed in patients with atrophic gastritis, duodenal ulcer and healthy volunteers, but not in patients with IDDM. Suppression of plasma gastrin in healthy volunteers was also observed following oral administration of tolbutamide. Despite the observed decrease in plasma gastrin, neither basal nor tetragastrin-stimulated acid output was changed for 30 min following tolbutamide infusion in healthy volunteers. Thus, our data suggest that tolbutamide inhibits gastrin release in man via mechanisms independent of changes in plasma insulin, blood glucose or acid secretion.  相似文献   

8.
Postprandial ghrelin suppression arises from the interaction of meal contents with the small intestine and may relate to elevations in blood glucose and/or plasma insulin. We sought to determine whether the suppression of ghrelin by small intestinal glucose is dependent on the glucose load and can be accounted for by changes in blood glucose and/or plasma insulin. Blood glucose, plasma insulin, and plasma ghrelin levels were measured in 10 healthy males (aged 32+/-4 yr; body mass index: 25.1+/-0.4 kg/m2) during intraduodenal glucose infusions at 1 kcal/min (G1), 2 kcal/min (G2), and 4 kcal/min (G4), as well as intraduodenal hypertonic saline (control) for 120 min. There was a progressive decrease in ghrelin with all treatments, control at 45 min and between 90 and 120 min (P<0.05) and G1 (P<0.05), G2 (P<0.0001), and G4 (P<0.0001) between 30 and 120 min to reach a plateau at approximately 90 min. There was no difference in plasma ghrelin between G1, G2, or G4. Control suppressed ghrelin to a lesser extent than intraduodenal glucose (P<0.05). The suppression of ghrelin was not related to rises in blood glucose or plasma insulin. Suppression of ghrelin by intraduodenal glucose in healthy males is apparently independent of the glucose load and unrelated to blood glucose or insulin levels.  相似文献   

9.
Postprandial blood glucose and insulin levels are both risk factors for developing obesity, type-2 diabetes, and coronary heart diseases. To date, research has shown that a single bout of moderate- to high-intensity aerobic exercise performed 相似文献   

10.
Previously, we reported that intranasal (IN) ACTH(1-24) administration stimulates adrenocortical steroid secretion in normal subjects. To determine the efficiency of transmucosal absorption of ACTH into the adrenal medulla, we measured serum cortisol, aldosterone, epinephrine, norepinephrine and dopamine levels after IN vs. intravenous (IV) administration of 250 microg ACTH(1-24) in 7 healthy adult men (mean age 21.7 +/- 1.2 yr; range, 21 - 24 yr). Blood was collected at 0, 30, 60 and 120 min after administration of ACTH(1-24), and the levels of adrenocortical steroids and catecholamines were measured by specific RIA and HPLC methods, respectively. There were no side effects associated with IN or IV ACTH administration. Consistent with the previous study, serum cortisol and aldosterone increased after IN administration of ACTH(1-24), peaking 30 min after administration. Sixty minutes after IN and IV administration of ACTH, epinephrine levels increased by 41.9 +/- 13.1 % and 63.3 +/- 11.8 %, respectively, and remained elevated throughout the sampling period. Thirty minutes after IN or IV administration of ACTH(1-24), plasma norepinephrine levels increased by 55.9 +/- 13.4 % and 73.7 +/- 15.0 %, respectively, peaking 30 min after ACTH(1-24) administration, and decreasing to basal levels within 60 min. Plasma dopamine levels did not change after IN administration of ACTH(1-24). Adrenocortical steroid and catecholamine levels did not increase after IN administration of saline. These results demonstrate that IN administration of ACTH(1-24) not only stimulates adrenocortical steroids, but also epinephrine and norepinephrine.  相似文献   

11.
The primary aims of this study were to evaluate the effects of the nitric oxide (NO) synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) on gastric emptying (GE) of, and the blood pressure (BP), glycemic, insulin, and incretin responses to, oral glucose in older subjects. Eight healthy subjects (4 males and 4 females, aged 70.9 +/- 1.3 yr) were studied on two separate days, in double-blind, randomized order. Subjects received an intravenous infusion of either l-NAME (180 mug.kg(-1).h(-1)) or saline (0.9%) at a rate of 3 ml/min for 150 min. Thirty minutes after the commencement of the infusion (0 min), subjects consumed a 300-ml drink containing 50 g glucose labeled with 20 MBq (99m)Tc-sulfur colloid, while sitting in front of a gamma camera. GE, BP (systolic and diastolic), heart rate (HR), blood glucose, plasma insulin, and incretin hormones, glucose-dependant insulinotropic-polypeptide (GIP), and glucagon-like peptide-1 (GLP-1), were measured. l-NAME had no effect on GE, GIP, and GLP-1. Between -30 and 0 min l-NAME had no effect on BP or HR. After the drink (0-60 min), systolic and diastolic BP fell (P < 0.05) and HR increased (P < 0.01) during saline; these effects were attenuated (P < 0.001) by l-NAME. Blood glucose levels between 90 and 150 min were higher (P < 0.001) and plasma insulin were between 15 and 150 min less (P < 0.001) after l-NAME. The fall in BP, increase in HR, and stimulation of insulin secretion by oral glucose in older subjects were mediated by NO mechanisms by an effect unrelated to GE or changes in incretin hormones.  相似文献   

12.
The responsiveness of the adrenal cortex and the sympathoadrenal-medullary system to stress factors and administration of (1–24) ACTH and insulin was studied in adult rabbits. In comparison to untreated animals, exposure to a novel environment for 10 min followed by artery puncture on 6 consecutive days elicited a moderate increase of corticosteroid (C), norepinephrine (NE) and epinephrine (E) plasma levels. Intramuscular injection of 50 μg/kg body weight (1–24) ACTH increased C, NE and E plasma levels. Saline injection resulted in elevated NE levels; C, E and glucose remained unchanged. After injection of 1.0 IU/kg body weight insulin C levels were higher than those found after exposure to a novel environment for 10mmin followed by artery puncture; similarly, NE and E were increased.In accordance with results obtained in the rat or mouse the sympathoadrenal-medullary system in the rabbit is stimulated by stress factors such as handling, artery puncture or injection of (1–24) ACTH or insulin. In contrast the adrenal cortex can be stimulated only to a certain extent by these manipulations. An increased activation of adrenal cortex cells occurs only after insulin, a maximum stimulation only after (1–24) ACTH administration.  相似文献   

13.
In the intact, unstressed ovine fetus, both plasma immunoreactive adrenocorticotrophin (ACTH) and blood cortisol concentrations increased after 121 days gestation. The mean ACTH and cortisol concentrations in intact fetuses of 90-121, 122-135 and 136-144 days gestation were for ACTH 20.4 +/- 3.9 (50) (mean +/- SEM, n), 30.2 +/- 5.6 (26) and 56.0 +/- 6.3 pg/ml (37) respectively, and for cortisol 0.07 +/- 0.01 (24), 0.17 +/- 0.03 (21) and 0.64 +/- 0.13 microgram/100 ml (15), respectively. After 121 days ACTH and cortisol concentrations were correlated positively. Cortisol infused into intact or adrenalectomized fetuses and corticosterone infused into adrenalectomized fetuses suppressed fetal plasma ACTH concentrations. In summary, ACTH and cortisol increase concomitantly after 122 days, so that it is highly probable that ACTH is the trophic stimulus for fetal adrenal maturation. The suppression of ACTH by cortisol and corticosterone suggests that these are the natural feedback regulators. It is proposed that while the mechanism for cortisol feedback may exist early in gestation, it is not until after 121 days that feedback control of ACTH becomes evident and physiologically important.  相似文献   

14.
The responses of plasma adrenocorticotropin hormone (ACTH) and cortisol to intravenous injection of cerulein (ceruletide), a decapeptide closely related to cholecystokinin octapeptide, were investigated in healthy men. In response to 16 ng/kg cerulein, plasma ACTH rose from a preinjection level of 42 +/- 11 pg/ml (mean +/- SEM) to a peak level of 81 +/- 16 pg/ml after 15 min. This ACTH increase was followed by a rise in plasma cortisol from a preinjection value of 10.3 +/- 0.9 microgram/dl to a peak value of 17.7 +/- 1.7 microgram/dl after 30 min. This is the first report of the potent stimulating effect of a cholecystokinin-8-related peptide on the pituitary-adrenal system in man.  相似文献   

15.
Pulmonary maturation in 8 ovine fetuses bilaterally adrenalectomized at 98-101 days and infused at term with either ACTH1-24 or cortisol was compared with that in 4 untreated sham-operated controls. Four of the adrenalectomized fetuses were infused intravascularly with ACTH1-24 5 micrograms/h for 84 h before delivery and the other four were infused with cortisol 1 mg/h for 72 h. The high plasma concentrations of immunoreactive ACTH in the adrenalectomized fetuses (2762 +/- 1339 ng/l, mean +/- SD) were not significantly elevated by infusion of ACTH1-24 but were markedly depressed by infusion of cortisol. Distensibility (V40) of the lungs was less than that of controls in both the ACTH1-24-infused and cortisol-infused fetuses (1.86 +/- 0.31 ml/g vs 0.62 +/- 0.13 ml/g and 1.27 +/- 0.34 ml/g respectively) but it was significantly greater in the cortisol-infused fetuses compared to those infused with ACTH1-24. The volume of air retained at 5 cm H2O pressure (V5) during deflation was markedly reduced in adrenalectomized fetuses (controls 1.14 +/- 0.52 ml/g vs 0.25 +/- 0.25 ml/g and 0.12 +/- 0.6 ml/g). The wet weight of the lungs and the concentrations of saturated phosphatylcholine in lung tissue and lavage fluid were lower in the adrenalectomized fetuses than in controls but the differences were not significant. It is concluded that infusion of ACTH1-24 at term in adrenalectomized fetuses is probably without effect whereas cortisol enhances distensibility.  相似文献   

16.
Water-restricted rats exhibit a rapid decrease in plasma corticosterone after drinking. The present study examined the effect of restriction-induced drinking on plasma aldosterone and plasma clearance of corticosterone. Rats were water restricted for 6-7 days and then killed before or 15 min after water administration; plasma and adrenal hormones were assayed. Plasma and adrenal corticosterone decreased after drinking without a change in plasma corticosteroid-binding globulin; plasma ACTH decreased or did not change. In contrast, plasma aldosterone did not change or increased after drinking; plasma renin activity was elevated by water restriction and increased further after drinking. In another experiment, rats were adrenalectomized, and corticosterone and aldosterone were replaced with pellets and osmotic minipumps, respectively. Rats were water restricted and killed. There was a small decrease in plasma corticosterone but no change in aldosterone after drinking in adrenalectomized animals. These data suggest that changes in plasma steroids after restriction-induced drinking result from zone-specific responses of the adrenal to known secretagogues, with minimal contribution from increased plasma clearance.  相似文献   

17.
Acute increases of the key counterregulatory hormone epinephrine can be modified by a number of physiological and pathological conditions in type 1 diabetic patients (T1DM). However, it is undecided whether the physiological effects of epinephrine are also reduced in T1DM. Therefore, the aim of this study was to determine whether target organ (liver, muscle, adipose tissue, pancreas, cardiovascular) responses to epinephrine differ between healthy subjects and T1DM patients. Thirty-four age- and weight-matched T1DM (n = 17) and healthy subjects (n = 17) underwent two randomized, single-blind, 2-h hyperinsulinemic euglycemic clamp studies with (Epi) and without epinephrine infusion. Muscle biopsy was performed at the end of each study. Epinephrine levels during Epi were similar in all groups (4,039 +/- 384 pmol/l). Glucose (5.3 +/- 0.06 mmol/l) and insulin levels (462 +/- 18 pmol/l) were also similar in all groups during the glucose clamps. Glucagon responses to Epi were absent in T1DM and significantly reduced compared with healthy subjects. Endogenous glucose production during the final 30 min was significantly greater during Epi in healthy subjects compared with T1DM (8.4 +/- 1.3 vs. 4.4 +/- 0.6 micromol.kg(-1).min(-1), P = 0.041). Glucose uptake showed almost a twofold greater decrease with Epi in healthy subjects vs. T1DM (Delta31 +/- 2 vs. Delta17 +/- 2 nmol.kg(-1).min(-1), respectively, P = 0.026). Glycerol, beta-hydroxybutyrate, and nonesterified fatty acid (NEFA) all increased significantly more in T1DM compared with healthy subjects. Increases in systolic blood pressure were greater in healthy subjects, but reductions of diastolic blood pressure were greater in T1DM patients with Epi. Reduction of glycogen synthase was significantly greater during epinephrine infusion in T1DM vs. healthy subjects. In summary, despite equivalent epinephrine, insulin, and glucose levels, changes in glucose flux, glucagon, and cardiovascular responses were greater in healthy subjects compared with T1DM. However, T1DM patients had greater lipolytic responses (glycerol and NEFA) during Epi. Thus we conclude that there is a spectrum of significant in vivo physiological differences of epinephrine action at the liver, muscle, adipose tissue, pancreas, and cardiovascular system between T1DM and healthy subjects.  相似文献   

18.
Epinephrine (E) and norepinephrine (NE) levels were measured simultaneously in the adrenal veins of 6 patients before and after stimulation with 0.25 mg beta 1-24 ACTH. In 1 patient with Cushing's syndrome, E and NE were also measured before and 30 min after dexamethasone. There was a significant increase in NE and E secretion (p less than 0.002) from both adrenal glands after ACTH stimulation. In the patient with Cushing's syndrome, there was also a slight increase in plasma E levels after dexamethasone. It is postulated that ACTH stimulated NE and E secretion by augmenting blood flow through the adrenals and by induction of tyrosine hydroxylase and dopamine beta-hydroxylase, although a direct effect of ACTH on NE and E secretion cannot be excluded. It is also possible that the increase in adrenal catecholamine secretion after ACTH may be due to ACTH augmentation of catecholamine secretion by endogenous opioids such as beta-endorphin.  相似文献   

19.
We studied the effect of the acute administration of gliclazide at 160 mg on insulin release during hyperglycaemic clamps in 12 type 2 diabetes patients, age 50 +/- 9.0 years, diabetes duration 5.5 +/- 4.8 years, fasting blood glucose 9.6 +/- 2.1 mmol/L (means +/- SD). After a 210 min of hyperinsulinaemic euglycaemic clamp (blood glucose 4.6 +/- 0.14mmol/L), gliclazide or placebo (randomised, double-blind, cross-over) was administered; 60 minutes later, a hyperglycaemic clamp (4hr) at 8mmol/L was started. Plasma C-peptide levels increased significantly after the administration of gliclazide (increment 0.17 +/- 0.15 vs. 0.04 +/- 0.07 nmol/L, p = 0.024) before the clamp. After the start of the hyperglycaemic clamp, the areas under the curve (AUC) for insulin and C-peptide did not differ from 0-10 min (first phase) with gliclazide. However, second-phase insulin release (30-240 min) was markedly enhanced by gliclazide. AUC plasma insulin (30 to 240 min) was statistically significantly higher after gliclazide (12.3 +/- 13.9 vs. -0.56 +/- 9.4 nmol/L x 210 min, p = 0.022); similarly, AUC plasma C-peptide (30 to 240 min) was also higher: 128 +/- 62 vs. 63 +/- 50 nmol/L x 210 min, p = 0.002). In conclusion, in long-standing type 2 diabetes the acute administration of gliclazide significantly enhances second phase insulin release at a moderately elevated blood glucose level. In contrast to previous findings in mildly diabetic subjects, these 12 type 2 diabetes patients who had an inconsiderable first phase insulin release on the placebo day, only showed an insignificant increase in first phase with gliclazide.  相似文献   

20.
Changes in body fluid distribution are known to influence neuroendocrine function. The aim of the present study was to test the hypothesis that changes in plasma volume affect the counterregulatory neuroendocrine response to hypoglycemia. The tests were performed in 12 subjects in two situations: 'head-up' (+60 degrees head-up tilt standing for 30 min and hypoglycemia in sitting position afterwards) and 'leg-up' (leg-up position for 30 min and hypoglycemia in leg-up position afterwards) in a random order. Insulin-induced hypoglycemia was adjusted to 2.7 mmol/l for 15 min by glucose infusion. Plasma volume was greater by 2.2% (p < 0.001) in leg-up and lower by 9.6% (p < 0.001) in head-up position compared to the basal value in sitting position. Head-up position was associated with increases in ACTH, aldosterone, norepinephrine levels and plasma renin activity (p < 0.01). Leg-up position resulted in decreases in plasma growth hormone and epinephrine concentrations (p < 0.05). Except epinephrine, the neuroendocrine response to hypoglycemia, if any, was mild. Hypoglycemia failed to activate ACTH release after head-up position. Body fluid redistribution did not modify hormonal changes during insulin hypoglycemia. In conclusion, we suggest that body position and accompanying plasma volume changes do not appear to affect neuroendocrine and counterregulatory responses to moderate, short duration hypoglycemia in healthy subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号