首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chlorophyll a specific absorption coefficient aph* and absorption ratio (aph ratio) of Alexandrium tamarense at five concentrations of nitrate, ammonium and urea over a range from 6 to 100 μM were examined. The experimental results were compared to two coastal diatom species and a prymnesiophyte to identify differences in absorption ratios. Cells exposed to increasing nitrate concentrations were characterized by an increase in aph* at 443, 490, 510, 555 and 675 nm. However, ammonium and urea induced low aph* values at their lowest and highest concentrations. The aph relative to 510 or 555 nm was constant regardless of the concentration of the N source, but dependent on the N source. Oxidized N induced a lower aph ratio than the reduced form. Comparisons of the aph ratio among taxonomic groups revealed significant differences. The aph ratio of A. tamarense was 20–30 and >50% lower than those of two diatoms and a prymnesiophyte, respectively. The aph ratio of the present study could assist in increasing the capability for detecting harmful species such as A. tamarense.  相似文献   

2.
The chlorophyll a-specific absorption coefficient ( a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) ) in a highly eutrophic lake can show characteristics distinct from that in the ocean due to the differences in the structure and composition of phytoplankton. In this study, investigated the variation of a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) in Lake Kasumigaura, a highly eutrophic lake in Japan, in association with the package effect and the effect of accessory pigments, and carried out the parameterization of a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) . Although a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) did not vary spatially, it did show significant temporal variation, with a particularly high value after spring-bloom. This high a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) in spring was attributed to a lower package effect and a higher proportion of carotenoid than the other samples. Although the value of a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) was correlated with the concentration of chlorophyll-a (Chl-a), the correlation coefficient was lower than those reported in the ocean. Some lake-water samples showed variations of the package effect and the effect of accessory pigments that were independent of the concentration of Chl-a, and these independent variations resulted in the weak correlation between a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) and the concentration of Chl-a. Together, these results suggest that the factors controlling a\textph* ( l) a_{\text{ph}}^{*} \left( \lambda \right) in highly eutrophic lakes are distinct from that in ocean samples.  相似文献   

3.
A Real-time polymerase chain reaction (PCR) assay was designed and evaluated for rapid detection and quantification of the toxic dinoflagellates Alexandrium catenella and A. tamarense, which cause paralytic shellfish poisoning. Two sets of PCR primers and fluorogenic probes targeting these two species were derived from the sequence of 28S ribosomal DNA. PCR specificity was examined in closely related Alexandrium spp. and many other microalgae. A. catenellaspecific primers and probe detected the PCR amplification only from A. catenella strains, and nonspecific signals were not detected from any microalgae. Also, A. tamarensespecific primers and probe also detected the targeted species, suggesting the strict species specificity of each PCR. This assay could detect one cell of each species, showing its high sensitivity. Moreover, using the developed standard curves, A. tamarense and A. catenella could be quantified in agreement with the quantification by optical microscopy. The performance characteristics of species specificity, sensitivity, and rapidity suggest that this method is applicable to the monitoring of the toxic A. tamarense and A. catenella.  相似文献   

4.
The phytoplankton community structure of a hypertrophic lake was quantitatively determined with the aid of flow cytometry. The flow cytometry signals were calibrated to obtain cell‐specific information, such as the chl a content and the biovolume per cell. The reliability of this method was tested with laboratory cultures. The results of the phytoplankton structure in a hypertrophic lake with respect to chl distribution in the different algal groups obtained by flow cytometry were compared with the results from HPLC pigment fingerprinting. Both methods yield the percentage contribution of the different algal groups to total chl a. The chl a specific absorption coefficient of the phytoplankton (a*Phy) was determined via visible (VIS) spectroscopy of samples taken from a hypertrophic lake (Auensee) in 2003. The results indicated that a*Phy of the total cell suspension is dependent on the phytoplankton structure as well as on environmental factors. The linear relationship between a*Phy at 675 nm and the product of the chl a content per cell and the biovolume offered the possibility to normalize phytoplankton absorption spectra to acquire the taxon‐specific a*Phy. The estimated a*Phy (675 nm) values were used to normalize single cell absorption spectra at this wavelength to obtain the a*Phy between 400 and 750 nm for representatives of the major algal groups. Our measurements show that the absorption coefficient for the whole phytoplankton community varies within the season. Finally, we used the a*Phy and the chl a distribution to calculate the light absorption of each algal group in the hypertrophic lake.  相似文献   

5.
The effects of growth temperature on the marine chlorophyte Dunaliella tertiolecta Butcher were studied to provide a more mechanistic understanding of the role of environmental factors in regulating bio-optical properties of phytoplankton. Specific attention was focused on quantities that are relevant for modeling of growth and photosynthesis. Characteristics including chlorophyll a (chl z)-specific light absorption (a*ph(λ)), C:chl a ratio, and quantum yield for growth (φμ) varied as functions of temperature under conditions of excess light and nutrients. As temperature increased over the range examined (12°-28°C), intracellular concentrations of chl a increased by a factor of 2 and a*ph(λ) values decreased by more than 50% at blue to green wavelengths. The lower values of a*ph(λ) were due to both a decrease in the abundance of accessory pigments relative to chl a and an increase in pigment package effects arising from higher intracellular pigment concentrations. Intracellular pigment concentration increased as a consequence of higher cellular pigment quotas combined with lower cell volume. At high growth temperatures, slightly more light was absorbed on a per-cell-C basis, but the dramatic increases in growth rate from μ= 0.5 d?1 at 12° C to μ= 2.2 d?1 at 28°C were primarily due to an increase in φμ (0.015–0.041 mol C (mol quanta)?1). By comparison with previous work on this species, we conclude the effects of temperature on a*ph(λ) and φμ are comparable to those observed for light and nutrient limitation. Patterns of variability in a*ph(λ)and φμ as a function of growth rate at different temperatures are similar to those previously documented for this species grown at the same irradiance but under a range of nitrogen-limited conditions. These results are discussed in the context of implications for bio-optical modeling of aquatic primary production by phytoplankton.  相似文献   

6.
In order to investigate variations of absorption and total chlorophyll-a (TChl-a)-specific absorption coefficient of phytoplankton in Lake Taihu, 57 water samples obtained from Lake Taihu during November 8–22, 2007 were used in this study. Package effect and accessory pigments’ influences on the absorption spectra were also examined. Phytoplankton absorption was measured by quality filter technical, and TChl-a concentration was measured by “hot ethanol” method. Results yielded significant variations in phytoplankton absorption and TChl-a-specific absorption coefficient. Phytoplankton absorption coefficient at 675 nm is highly correlated to TChl-a concentration, while absorption at 440 nm is less correlated to TChl-a concentration because of great package effect and accessory pigments’ influence. There was an inverse relationship between a ph*(λ) and TChl-a concentration. Four types of absorption spectra are identified by normalizing a ph*(λ) to a ph*(440). The a ph*(λ) variation is mainly due to accessory pigments and package effect, whose influence at 675 nm ranges from 83.2% to 28%, with an average of 65.3%. Meanwhile, the wide varying ratio of a ph*(440) to a ph*(675) indicates a large variation range in the ratio of accessory pigment to TChl-a concentration. Those findings are significant to estimate Chl-a concentration based on bio-optical model, estimate primary production from remote sensing, and plan further ecological restoration measures for Lake Taihu. Handling editor: Luigi Naselli-Flores  相似文献   

7.
On the basis of field measurements, the quantitatively different relationships of peak position in the red band of the remote sensing reflectance vs. Chl concentration are found in the bloom waters of the diatom Skeletonema costatum and the dinoflagellate Prorocentrum donghaiense in coastal areas of the East China Sea. Model simulations of remote sensing reflectance, Rrs, accounting for the influence of variations in the bio-optical parameters such as chlorophyll fluorescence quantum efficiency, Φ, and specific absorption coefficient, aph, are carried out to analyze the characteristics of this spectral peak. The strong effect of fluorescence on the magnitude of Rrs results in the inhibition of the shift of the peak to longer wavelengths, increasing Φ enhances this effect. Increasing aph, specifically in the red-wavelength band, causes a sharper shift in the red peak position by decreasing the effect of the fluorescence. The dominant parameter governing the slope of the shift is aph. The analysis indicates that the higher aph of S. costatum in the red region is primarily responsible for the much higher slope of the peak shift than for that of P. donghaiense. We show that the relationship between the peak position and Chl concentration may be useful for discriminating S. costatum blooms from those due to P. donghaiense, although information about chlorophyll fluorescence quantum efficiency should be included. Finally, we show that using the band ratio Rrs(708 nm)/Rrs(665 nm) instead of Chl in the relationship with peak position can be useful for the practical identification of S. costatum blooms from hyperspectral measurements of remote sensing reflectance.  相似文献   

8.
Light scattering, backscattering, and absorption coefficients of particles were observed at 62 locations in Lake Taihu (China) in November 2008. A method using a priori knowledge and the measured data was proposed to partition particulate scattering and absorption into contributions of phytoplankton and non-algal particles. The results showed that phytoplankton weakly contributed to the particulate scattering and backscattering with the mean b ph/b p values usually below 10% and b bph/b bt values of 0.3–3.9% in the whole visible light spectrum, and an approximate relationship of b bt ≈ b bp ≈ b bnap was regarded as reasonable in Lake Taihu. In contrast with scattering and backscattering, phytoplankton made more contributions to the particulate absorption with the mean a ph/a p values varying in a wide range of about 20–70%. Both the scattering and absorption spectra of non-algal particles can be modeled well by corresponding methods. A power function model was used to simulate the scattering spectra, which presented high predictive accuracies with MAPE values usually below 5% and RMSE values below 1.5 m−1, while the spectral absorption model also performed well with mean S nap being 0.0052 nm−1 (standard deviation, SD = 0.0010 nm−1). As to the phytoplankton absorption, a quadratic function model used was considered to have a good performance with corresponding parameters being supported at each wavelength in the spectral range of 400–700 nm. Additionally, two basic bio-optical parameters were determined, that is, b nap*(550) = 0.604 m2 g−1 and a ph*(675) = 0.0288 m2 mg−1. Overall, these results obtained in the present study supply us with new knowledge about optical properties of suspended particulates in an inland and highly turbid lake (Lake Taihu), which are beneficial to the development of analytical models of water color remote sensing.  相似文献   

9.
We investigated the shade adaptation of a seasonally well-developed ice algal community in thin sea ice at Saroma-Ko Lagoon, Hokkaido, Japan on 3–4 March 2006 and 4–5 March 2007, by examining photosynthetic pigment concentrations, the chlorophyll a-specific light-absorption coefficient (a ph *), and the light-saturation index (E k ). The high proportions of photosynthetic pigments, including chlorophyll a, fucoxanthin, and chlorophyll c, and the low values of a ph *(440) and a ph *(675) suggested that the lagoon’s ice algal community was shade-adapted. The high ratio of E k to total photosynthetically active radiation (PAR) in the ice algal habitat suggested that the degree of shade adaptation is weak. Scaling of E k to total PAR could be extended to studies of the degree of photoadaptive succession of ice algal communities in the Northern Hemisphere. The degree of shade adaptation of ice algal communities in the Northern Hemisphere might be related to ice thickness, regardless of latitude.  相似文献   

10.
Although the molecular data currently used for identifying dinoflagellates are generally limited to nuclear ribosomal RNA genes, some dinoflagellates cannot be identified by their gene sequence or morphotype, suggesting that additional effective molecular makers are required. We report here a novel species-specific marker on the mitochondrial (mt) genome of dinoflagellates belonging to six Alexandrium spp., namely, A. tamarense, A. catenella, A. tamiyavanichii, A. affine, A. hiranoi, and A. pseudogonyaulax. This new mt marker was able to clearly differentiate these six species. PCR analysis using a primer set for the A. tamarense-specific sequence confirmed that this sequence is conserved in A. tamarense strains but not in other dinoflagellate species. We also sequenced the mt genome containing the developed molecular marker using a single cell from a field sample, which suggests that this marker is a powerful tool for identifying unculturable dinoflagellates. The sequenced molecular region was also used to identify Alexandrium-like cells isolated from environmental seawater as A. tamarense and A. affine.  相似文献   

11.
Alexandrium tamarense (M. Lebour) Balech strains isolated in spring 2007 from a single bloom in Thau lagoon have been grown in nonaxenic artificial media. For three strains showing large oscillations in biomass (crashes followed by recoveries) on a scale of several days, a significant relationship was observed between changes in cell densities (as in vivo fluorescence) and changes in nitrate concentrations. Increases in cell densities were accompanied by decreases in nitrate, while decreases in cell densities corresponded to increases in nitrate, presumably due to nitrification. Net increases in nitrate could reach up to 15 μmol N · L?1 · d?1 indicating a very active nitrifying archaeal/bacterial population. However, following population crashes, algal cells can recover and attain biomass levels similar to those reached during the first growth phase. This finding indicates that those archaea/bacteria do not compete for nutrients or do not hamper algal growth under those conditions. In contrast to diatoms, dinoflagellates such as A. tamarense do not excrete/exude dissolved organic matter, thus preventing excessive bacterial growth. This mechanism could help explain the recovery of this species in the presence of bacteria.  相似文献   

12.
To investigate harmful effects of the dinoflagellate Alexandrium species on microzooplankton, the rotifer Brachionus plicatilis was chosen as an assay species, and tested with 10 strains of Alexandrium including one known non-PSP-producer (Alexandrium tamarense, AT-6). HPLC analysis confirmed the PSP-content of the various strains: Alexandrium lusitanicum, Alexandrium minutum and Alexandrium tamarense (ATHK, AT5-1, AT5-3, ATCI02, ATCI03) used in the experiment were PSP-producers. No PSP toxins were detected in the strains Alexandrium sp1, Alexandrium sp2.Exposing rotifer populations to the densities of 2000 cells ml−1 of each of these 10 Alexandrium strains revealed that the (non-PSP) A. tamarense (AT-6) and two other PSP-producing algae: A. lusitanicum, A. minutum, did not appear to adversely impact rotifer populations. Rotifers exposed to these three strains were able to maintain their population numbers, and in some cases, increase them. Although some increases in rotifer population growth following exposures to these three algal species were noted, the rate was less than for the non-exposed control rotifer groups.In contrast, the remaining seven algal strains (A. tamarense ATHK, AT5-1, AT5-3, ATCI02, ATCI03; also Alexandrium sp1 and Alexandrium sp2) all have adverse effects on the rotifers. Dosing rotifers with respective algal cell densities of 2000 cells ml−1 each, for Alexandrium sp1, Alexandrium sp2, and A. tamarense strains ATHK and ATCI03 showed mean lethal time (LT50) on rotifer populations of 21, 28, 29, and 36h, respectively. The remaining three species (A. tamarense strains AT5-1, AT5-3, ATCI02) caused respective mean rotifer LT50s of 56, 56, and 71 h, compared to 160 h for the unexposed “starved control” rotifers. Experiments to determine ingestion rates for the rotifers, based on changes in their Chlorophyll a content, showed that the rotifers could feed on A. lusitanicum, A. minutum and A. tamarense strain AT-6, but could graze to little or no extent upon algal cells of the other seven strains. The effects on rotifers exposed to different cell densities, fractions, and growth phases of A. tamarense algal culture were respectively compared. It was found that only the whole algal cells had lethal effects, with strongest impact being shown by the early exponential growth phase of A. tamarense. The results indicate that some toxic mechanism(s), other than PSP and present in whole algal cells, might be responsible for the adverse effects on the exposed rotifers.  相似文献   

13.
Photoadaptive responses in the toxic and bloom-forming dinoflagellates Gyrodinium aureolum Hulbert, Gymnodinium galatheanum Braarud, and two strains of Prorocentrum minimum (Pavillard)Schiller were evaluated with respect to pigment composition, light-harvesting characteristics, carbon and nitrogen contents, and growth rates in shade- and light-adapted cells. The two former species were grown at scalar irradiances of 30 and 170 μmol · m ?2 at a 12-h daylength at 20° C. The two strains of P. minimum were grown at 35 and 500 μmol. m?2· s?1 at a 2-h daylength at 20° C. For the first time, chlorophyll (chl) c3, characteristic of several bloom-forming prymnesiophytes, was detected in G. aureolum and G. galatheanum. Photoadaptional status affected the pigment composition strongly, and the interpretation of the variation depended on whether the pigment composition was normalized per cell, carbon, or chl a. Species-specific and photoadaptional differences in chl a-specific absorption (°ac, 400–700 nm) and chl a-normalized fluorescence excitation spectra of photosystem II fluorescence with or without addition of DCMU (°F and °FDCMU 400–700 nm) were evident. Gyrodinium aureolum and G. galatheanum exhibited in vivo spectral characteristics similar to chl c3-containing prymnesiophytes in accordance with their similar pigmentation. Prorocentrum minimum had in vivo absorption and fluorescence characteristics typical for peridinin-containing dinoflagellates. Species-specific differences in in vivo absorption were also observed as a function of package effect vs. growth irradiance. This effect could be explained by differences in intracellular pigment content, cell size/shape, and chloroplast morphology/numbers. Light- and shade-adapted cells of P. minimum contained 43 and 17% of photoprotective carotenoids (diadino + diatoxanthin) relative to chl a, respectively. The photoprotective function of these carotenoids was clearly observed as a reduction in °F and °F DCMU at 400–540 nm compared to °ac in light-adapted cells of P. minimum. Spectrally weighted light absorption (normalized to chl a and carbon, 400–700 nm) varied with species and growth conditions. The use of quantum-corrected and normalized fluorescence excitation spectra with or without DCMU-treated cells to estimate photosynthetically usable light is discussed. The usefulness of in vitro absorption and fluorescence excitation spectra for estimation of the degradation status of chl a and the ratio of chl a to total pigments is also discussed.  相似文献   

14.
Absorptions by non-phytoplankton particles and phytoplankton, and chromophoric dissolved organic matter (CDOM) were measured at 50 sites in large, shallow, Lake Taihu in winter and summer 2006 to study their seasonal and spatial variations, and their relative contributions to total absorption. The CDOM absorption was significantly higher in winter than in summer, due to degradation and release of fixed carbon in phytoplankton and submerged aquatic vegetation (SAV). The hyperbolic model was used to model the spectral absorption of CDOM, and the mean spectral slope of 6.38 nm−1 was obtained. At most sites, the spectral absorption of non-phytoplankton particles was similar to that of the total particles, demonstrating that the absorption of the total particles is dominated by the absorption of non-phytoplankton particles. In summer, phytoplankton absorption increased markedly, due to frequent algal blooms especially in Meiliang Bay. In winter, the significant increase in non-phytoplankton particle absorption resulted from the increase of inorganic particulate matter caused by sediment resuspension. Strong linear relationships were found between a d(440) and total suspended matter (TSM), organic suspended matter (OSM), and inorganic suspended matter (ISM). Strong linear relationships were also found between a ph(440), a ph(675) and chlorophyll a (Chl-a) concentration. The total relative contributions of non-phytoplankton particles over the range of photosynthetically active radiation (PAR) (400–700 nm) were 48.4 and 79.9% in summer and winter respectively. Non-phytoplankton particle absorption dominated the total absorption, especially in winter, in Lake Taihu, due to frequent sediment resuspension in the large shallow lake as a result of strong windy conditions. The results indicate that strong absorption by CDOM and non-phytoplankton particles at the blue wavelength has an impact on the spectral availability, and acts as a selection factor for the composition of the phytoplankton community, with cyanobacteria being the dominate species in Lake Taihu. Handling editor: L. Naselli-Flores  相似文献   

15.
The crown architectures of 11 Psychotria species native to Barro Colorado Island, Panama were reconstructed from field measurements of leaf and branch geometry with the three-dimensional simulation model Y-plant. The objective was to assess the role of species differences in architecture in light capture and carbon gain in their natural understory environment. When species were grouped according to their putative light environment preference, the shade tolerant species were found to have a small but significantly higher efficiency of light capture for both diffuse and direct light as compared to the light demanding species. Within each grouping, however, there were few significant differences in light capture efficiency among species. The lower efficiencies of light demanding species was due to slightly higher self-shading and slightly lower angular efficiencies. Simulations of whole plant assimilation showed that light demanding species had greater daily assimilation in both direct and diffuse light due to the significantly greater light availability in the sites where light demanding species were found, as compared to those where shade tolerant species occurred. Among light demanding species, the above ground relative growth rate measured over a 1-year period by applying allometric equations for mass versus linear dimensions, was positively correlated with diffuse PFD and with mean daily assimilation estimated from Y-plant. For the shade tolerant plants, there was no significant correlation between RGR and mean daily assimilation or with any measure of light availability, probably because they occurred over a much narrower range of light environments. Overall, the results reveal a strong convergence in light capture efficiencies among the Psychotria species at lower values than previously observed in understory plants using similar approaches. Constraints imposed by other crown functions such as hydraulics and biomechanical support may place upper limits on light capture efficiency.Abbreviations Ea Efficiency of light absorption (dimensionless) - Eadir Efficiency of direct light absorption (dimensionless) - Eadif Efficiency of diffuse light absorption (dimensionless) - DE Display efficiency (dimensionless) - PE Projection efficiency (dimensionless) - CosI Mean cosine of incidence (dimensionless) - aLARe Effective leaf area ratio (m2 g–1) - Atot Daily assimilation (mmol m–2 day–1) - Adir Daily assimilation in direct PFD (mmol m–2 day–1) - Adif Daily assimilation in diffuse PFD (mmol m–2 day–1)  相似文献   

16.
The relationship between growth rate versus phosphorus concentration and cellular toxin content was determined for Alexandrium minutum AL1V, Alexandrium tamarense MDQ1096, A. tamarense EF04 and Alexandrium andersoni EF12 under different nitrogen and phosphorus supplies. The aim was to determine whether those species with a lower phosphorus uptake affinity, and hence potentially of lower competitive ability at low phosphorus concentrations, were more toxic. The range and mean of toxic content per cell (as fmol per cell) of the species were 13.5–256.5 and 140.2±50.8 for A. tamarense MDQ1096, 0.5–16.5 and 2.9±2.6 for A. minutum, 0–2.0 and 0.2±0.3 for A. tamarense EF04 and, 0–3.3 and 0.06±0.4 for A. andersoni. Ks for culture cell growth (per day),representing the phosphate concentration at which the specific culture cell growth rate is one half the maximum rate, and Kmin (per day), the phosphate concentration at which the specific culture cell growth rate is zero, were used as indicators of species’ potential competitive ability at low phosphorus concentrations. Low values for both Ks and Kmin indicate a high relative ability of the species to use low levels of phosphate and, hence, expected to outcompete higher Ks and Kmin species under phosphorus limitation. Ks and Kmin were 1.68 and 0.48 for A. tamarense MDQ1096, 1.16 and 0.39 for A. minutum, 1.0 and 0.38 for A. tamarense EF04 and, 0.74 and 0.34 for A. andersoni, respectively. There was a significant positive relationship between toxin content per cell with both Ks and Kmin, indicating that those species with lower ability to compete under phosphorus limitation were more toxic. The findings support the hypothesis that toxin production by dinoflagellates species could be an adaptation evolved to offset the ecological disadvantage of having low nutrient affinity.  相似文献   

17.
The photosynthesis‐irradiance response (PE) curve, in which mass‐specific photosynthetic rates are plotted versus irradiance, is commonly used to characterize photoacclimation. The interpretation of PE curves depends critically on the currency in which mass is expressed. Normalizing the light‐limited rate to chl a yields the chl a‐specific initial slope (αchl). This is proportional to the light absorption coefficient (achl), the proportionality factor being the photon efficiency of photosynthesis (φm). Thus, αchl is the product of achl and φm. In microalgae αchl typically shows little (<20%) phenotypic variability because declines of φm under conditions of high‐light stress are accompanied by increases of achl. The variation of αchl among species is dominated by changes in achl due to differences in pigment complement and pigment packaging. In contrast to the microalgae, αchl declines as irradiance increases in the cyanobacteria where phycobiliproteins dominate light absorption because of plasticity in the phycobiliprotein:chl a ratio. By definition, light‐saturated photosynthesis (Pm) is limited by a factor other than the rate of light absorption. Normalizing Pm to organic carbon concentration to obtain PmC allows a direct comparison with growth rates. Within species, PmC is independent of growth irradiance. Among species, PmC covaries with the resource‐saturated growth rate. The chl a:C ratio is a key physiological variable because the appropriate currencies for normalizing light‐limited and light‐saturated photosynthetic rates are, respectively, chl a and carbon. Typically, chl a:C is reduced to about 40% of its maximum value at an irradiance that supports 50% of the species‐specific maximum growth rate and light‐harvesting accessory pigments show similar or greater declines. In the steady state, this down‐regulation of pigment content prevents microalgae and cyanobacteria from maximizing photosynthetic rates throughout the light‐limited region for growth. The reason for down‐regulation of light harvesting, and therefore loss of potential photosynthetic gain at moderately limiting irradiances, is unknown. However, it is clear that maximizing the rate of photosynthetic carbon assimilation is not the only criterion governing photoacclimation.  相似文献   

18.
Long‐term growth response to natural solar radiation with enhanced ultraviolet‐B (UVB) exposure was examined in two species of dinoflagellates [Alexandrium tamarense (M. Lebour) Balech, At, and Heterocapsa triquetra (Ehrenb.) F. Stein, Ht], including two strains of A. tamarense, one from Spain and another from UK, and one diatom species (Thalassiosira pseudonana Hasle et Heimdal). We examined whether variable photoprotection (mycosporine‐like amino acids [MAAs] and xanthophyll‐cycle pigments) affected photosynthetic performance, phytoplankton light absorption, and growth. Growth rate was significantly reduced under enhanced UVB for the UK strain of At and for Ht (both grew very little) as well as for the diatom (that maintained high growth rates), but there was no effect for the Spanish strain of At. MAA concentration was high in the dinoflagellates, but undetectable in the diatom, which instead used the xanthophyll cycle for photoprotection. The highest cell concentrations of MAAs and photoprotective pigments were observed in the UK strain of At, along with lowest growth rates and Fv/Fm, indicating high stress levels. In contrast, the Spanish strain showed progressive acclimation to the experimental conditions, with no significant difference in growth between treatments. Increase in total MAAs followed linearly the cumulative UVB of the preceding day, and both total and primary MAAs were maintained at higher constitutive levels in this strain. Acclimation to enhanced UVB in the diatom resulted in an increase in PSII activity and reduction in nonphotochemical quenching, indicating an increased resistance to photoinhibition after a few weeks. All four species showed increased phytoplankton light absorption under enhanced UVB. Large intrastrain differences suggest a need to consider more closely intraspecific variability in UV studies.  相似文献   

19.
Atmospheric CO2 (Ca) has risen dramatically since preglacial times and is projected to double in the next century. As part of a 4‐year study, we examined leaf gas exchange and photosynthetic acclimation in C3 and C4 plants using unique chambers that maintained a continuous Ca gradient from 200 to 550 µmol mol?1 in a natural grassland. Our goals were to characterize linear, nonlinear and threshold responses to increasing Ca from past to future Ca levels. Photosynthesis (A), stomatal conductance (gs), leaf water‐use efficiency (A/gs) and leaf N content were measured in three common species: Bothriochloa ischaemum, a C4 perennial grass, Bromus japonicus, a C3 annual grass, and Solanum dimidiatum, a C3 perennial forb. Assimilation responses to internal CO2 concentrations (A/Ci curves) and photosynthetically active radiation (A/PAR curves) were also assessed, and acclimation parameters estimated from these data. Photosynthesis increased linearly with Ca in all species (P < 0.05). S. dimidiatum and B. ischaemum had greater carboxylation rates for Rubisco and PEP carboxylase, respectively, at subambient than superambient Ca (P < 0.05). To our knowledge, this is the first published evidence of A up‐regulation at subambient Ca in the field. No species showed down‐regulation at superambient Ca. Stomatal conductance generally showed curvilinear decreases with Ca in the perennial species (P < 0.05), with steeper declines over subambient Ca than superambient, suggesting that plant water relations have already changed significantly with past Ca increases. Resource‐use efficiency (A/gs and A/leaf N) in all species increased linearly with Ca. As both C3 and C4 plants had significant responses in A, gs, A/gs and A/leaf N to Ca enrichment, future Ca increases in this grassland may not favour C3 species as much as originally thought. Non‐linear responses and acclimation to low Ca should be incorporated into mechanistic models to better predict the effects of past and present rising Ca on grassland ecosystems.  相似文献   

20.
The activating factor of ATP·Mg-dependent protein phosphatase (F A) has been identified in brain microtubules. When using purified MAP-2 (microtubule associated protein 2) and tau proteins as substrates,F A could phosphorylate MAP-2 to 16 moles of phosphates per mole of protein with aK m value of 0.4 µM, and tau proteins to 4 moles of phosphates per mole of proteins with aK m value of about 3 µM. When using microtubules as substrates,F A could enhance many-fold the endogenous phosphorylation of many microtubule-associated proteins including MAP-2, tau proteins, and several low-molecular-weight MAPs. In contrast to other reported MAP kinases, such as cAMP-dependent protein kinase and Ca+2/phospholipid-dependent protein kinase, theF A-catalyzed phosphorylation of tau proteins could cause an electrophoretic mobility shift on sodium dodecyl sulfate polyacrylamide gel electrophoresis, suggesting that a dramatic conformational change of tau proteins was produced byF A. Peptide mapping analysis of the phosphopeptides derived from SV8 protease digestion revealed thatF A could phosphorylate MAP-2 and tau proteins on at least four specific sites distinctly different from those phosphorylated by cAMP-dependent and Ca+2/phospholipid-dependent MAP kinases. Quantitative analysis further indicated that approximately 19% of the total endogenous kinase activity in brain microtubules was due toF A. Taken together, the results provide initial evidence that the ATP·Mg-dependent protein phosphatase activating factor (F A) is a potent and unique MAP kinase, and may represent one of the major factors involved in phosphorylation of brain microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号