首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Gene regulation networks contain recurring circuit patterns called network motifs. One of the most common network motif is the incoherent type 1 feed‐forward loop (I1‐FFL), in which an activator controls both gene and repressor of that gene. This motif was shown to act as a pulse generator and response accelerator of gene expression. Here we consider an additional function of this motif: the I1‐FFL can generate a non‐monotonic dependence of gene expression on the input signal. Here, we study this experimentally in the galactose system of Escherichia coli, which is regulated by an I1‐FFL. The promoter activity of two of the gal operons, galETK and galP, peaks at intermediate levels of the signal cAMP. We find that mutants in which the I1‐FFL is disrupted lose this non‐monotonic behavior, and instead display monotonic input functions. Theoretical analysis suggests that non‐monotonic input functions can be achieved for a wide range of parameters by the I1‐FFL. The models also suggest regimes where a monotonic input‐function can occur, as observed in the mglBAC operon regulated by the same I1‐FFL. The present study thus experimentally demonstrates how upstream circuitry can affect gene input functions and how an I1‐FFL functions within its natural context in the cell.  相似文献   

3.
4.
Synthetic biology is a useful tool to investigate the dynamics of small biological networks and to assess our capacity to predict their behavior from computational models. In this work we report the construction of three different synthetic networks in Escherichia coli based upon the incoherent feed-forward loop architecture. The steady state behavior of the networks was investigated experimentally and computationally under different mutational regimes in a population based assay. Our data shows that the three incoherent feed-forward networks, using three different macromolecular inhibitory elements, reproduce the behavior predicted from our computational model. We also demonstrate that specific biological motifs can be designed to generate similar behavior using different components. In addition we show how it is possible to tune the behavior of the networks in a predicable manner by applying suitable mutations to the inhibitory elements. Brian Aufderheide provided material support.  相似文献   

5.
6.
Induction of genes is rarely an isolated event; more typically occurring as part of a web of parallel interactions, or motifs, which act to refine and control gene expression. Here, we define an Incoherent Feed-forward Loop motif in which TNFα-induced NF-κB signalling activates expression of the TNFA gene itself and also controls synthesis of the negative regulator BCL-3. While sharing a common inductive signal, the two genes have distinct temporal expression profiles. Notably, while the TNFA gene promoter is primed to respond immediately to activated NF-κB in the nucleus, induction of BCL3 expression only occurs after a time delay of about 1h. We show that this time delay is defined by remodelling of the BCL3 gene promoter, which is required to activate gene expression, and characterise the chromatin delayed induction of BCL3 expression using mathematical models. The models show how a delay in inhibitor production effectively uncouples the rate of response to inflammatory cues from the final magnitude of inhibition. Hence, within this regulatory motif, a delayed (incoherent) feed-forward loop together with differential rates of TNFA (fast) and BCL3 (slow) mRNA turnover provide robust, pulsatile expression of TNFα . We propose that the structure of the BCL-3-dependent regulatory motif has a beneficial role in modulating expression dynamics and the inflammatory response while minimising the risk of pathological hyper-inflammation.  相似文献   

7.
8.
An incoherent feed-forward loop (FFL) is one of the most-frequently observed motifs in biomolecular regulatory networks. It has been thought that the incoherent FFL is designed simply to induce a transient response shaped by a 'fast activation and delayed inhibition'. We find that the dynamics of various incoherent FFLs can be further classified into two types: time-dependent biphasic responses and dose-dependent biphasic responses. Why do the structurally identical incoherent FFLs play such different dynamical roles? Through computational studies, we show that the dynamics of the two types of incoherent FFLs are mutually exclusive. Following from further computational results and experimental observations, we hypothesize that incoherent FFLs have been optimally designed to achieve distinct biological function arising from different cellular contexts. Additional Supporting Information may be found in the online version of the article.  相似文献   

9.
Signal integration in the galactose network of Escherichia coli   总被引:1,自引:1,他引:0  
  相似文献   

10.
11.
12.
Gene-regulation networks contain recurring elementary circuits termed network motifs. It is of interest to understand under which environmental conditions each motif might be selected. To address this, we study one of the most significant network motifs, a three-gene circuit called the coherent feed-forward loop (FFL). The FFL has been demonstrated theoretically and experimentally to perform a basic information-processing function: it shows a delay following ON steps of an input inducer, but not after OFF steps. Here, we ask under what environmental conditions might the FFL be selected over simpler gene circuits, based on this function. We employ a theoretical cost-benefit analysis for the selection of gene circuits in a given environment. We find conditions that the environment must satisfy in order for the FFL to be selected over simpler circuits: the FFL is selected in environments where the distribution of the input pulse duration is sufficiently broad and contains both long and short pulses. Optimal values of the biochemical parameters of the FFL circuit are determined as a function of the environment such that the delay in the FFL blocks deleterious short pulses of induction. This approach can be generally used to study the evolutionary selection of other network motifs.  相似文献   

13.
14.
The gene regulatory network of a developmental process contains many mutually repressive interactions between two genes. They are often regulated by or regulate an additional factor, which constitute prominent network motifs, called regulated and regulating mutual loops. Our database analysis on the gene regulatory network for Drosophila melanogaster indicates that those with mutual repression are working specifically for the segmentation process. To clarify their biological roles, we mathematically study the response of the regulated mutual loop with mutual repression to input stimuli. We show that the mutual repression increases the response sensitivity without affecting the threshold input level to activate the target gene expression, as long as the network output is unique for a given input level. This high sensitivity of the motif can contribute to sharpening the spatial domain pattern without changing its position, assuring a robust developmental process. We also study transient dynamics that shows shift of domain boundary, agreeing with experimental observations. Importance of mutual repression is addressed by comparing with other types of regulations.  相似文献   

15.
Rodrigo G  Elena SF 《PloS one》2011,6(2):e16904
Signaling pathways are interconnected to regulatory circuits for sensing the environment and expressing the appropriate genetic profile. In particular, gradients of diffusing molecules (morphogens) determine cell fate at a given position, dictating development and spatial organization. The feedforward loop (FFL) circuit is among the simplest genetic architectures able to generate one-stripe patterns by operating as an amplitude detection device, where high output levels are achieved at intermediate input ones. Here, using a heuristic optimization-based approach, we dissected the design space containing all possible topologies and parameter values of the FFL circuits. We explored the ability of being sensitive or adaptive to variations in the critical morphogen level where cell fate is switched. We found four different solutions for precision, corresponding to the four incoherent architectures, but remarkably only one mode for adaptiveness, the incoherent type 4 (I4-FFL). We further carried out a theoretical study to unveil the design principle for such structural discrimination, finding that the synergistic action and cooperative binding on the downstream promoter are instrumental to achieve absolute adaptive responses. Subsequently, we analyzed the robustness of these optimal circuits against perturbations in the kinetic parameters and molecular noise, which has allowed us to depict a scenario where adaptiveness, parameter sensitivity and noise tolerance are different, correlated facets of the robustness of the I4-FFL circuit. Strikingly, we showed a strong correlation between the input (environment-related) and the intrinsic (mutation-related) susceptibilities. Finally, we discussed the evolution of incoherent regulations in terms of multifunctionality and robustness.  相似文献   

16.
17.
18.
19.
An isorepressor of the gal regulon in Escherichia coli, GalS, has been purified to homogeneity. In vitro DNase I protection experiments indicated that among operators of the gal regulon, GalS binds most strongly to the external operator of the mgl operon, which encodes the high-affinity beta-methylgalactoside galactose transport system, and with less affinity to the operators controlling expression of the gal operon, which codes for enzymes of galactose metabolism. GalS has even less affinity for the external operator of galP, which codes for galactose permease, the major low-affinity galactose transporter in the cell. This order of affinities is the reverse of that of GalR, which binds most strongly to the operator of galP and most weakly to that of mgl. Our results also show that GalS, like its homolog, GalR, is a dimeric protein which in binding to the bipartite operators of the gal operon selectively represses its P1 promoter. Consistent with the fact that GalR is the exclusive regulator of the low-affinity galactose transporter, galactose permease, and that the major role of GalS is in regulating expression of the high-affinity galactose transporter encoded by the mgl operon, we found that the DNA binding of GalS is 15-fold more sensitive than that of GalR to galactose.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号