首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The mode of action of Deltalac-acetogenins, strong inhibitors of bovine heart mitochondrial complex I, is different from that of traditional inhibitors such as rotenone and piericidin A [Murai, M., et al. (2007) Biochemistry 46 , 6409-6416]. As further exploration of these unique inhibitors might provide new insights into the terminal electron transfer step of complex I, we drastically modified the structure of Deltalac-acetogenins and characterized their inhibitory action. In particular, on the basis of structural similarity between the bis-THF and the piperazine rings, we here synthesized a series of piperazine derivatives. Some of the derivatives exhibited very potent inhibition at nanomolar levels. The hydrophobicity of the side chains and their balance were important structural factors for the inhibition, as is the case for the original Deltalac-acetogenins. However, unlike in the case of the original Deltalac-acetogenins, (i) the presence of two hydroxy groups is not crucial for the activity, (ii) the level of superoxide production induced by the piperazines is relatively high, (iii) the inhibitory potency for the reverse electron transfer is remarkably weaker than that for the forward event, and (iv) the piperazines efficiently suppressed the specific binding of a photoaffinity probe of natural-type acetogenins ([ (125)I]TDA) to the ND1 subunit. We therefore conclude that the action mechanism of the piperazine series differs from that of the original Deltalac-acetogenins. The photoaffinity labeling study using a newly synthesized photoreactive piperazine ([ (125)I]AFP) revealed that this compound binds to the 49 kDa subunit and an unidentified subunit, not ND1, with a frequency of approximately 1:3. A variety of traditional complex I inhibitors as well as Deltalac-acetogenins suppressed the specific binding of [ (125)I]AFP to the subunits. The apparent competitive behavior of inhibitors that seem to bind to different sites may be due to structural changes at the binding site, rather than occupying the same site. The meaning of the occurrence of diverse inhibitors exhibiting different mechanisms of action is discussed in light of the functionality of the membrane arm of complex I.  相似文献   

2.
We synthesized novel ubiquinone analogs by hybridizing the natural ubiquinone ring (2,3-dimethoxy-5-methyl-1,4-benzoquinone) and hydrophobic phenoxybenzamide unit, and named them hybrid ubiquinones (HUs). The HUs worked as electron transfer substrates with bovine heart mitochondrial succinate-ubiquinone oxidoreductase (complex II) and ubiquinol-cytochrome c oxidoreductase (complex III), but not with NADH-ubiquinone oxidoreductase (complex I). With complex I, they acted as inhibitors in a noncompetitive manner against exogenous short-chain ubiquinones irrespective of the presence of the natural ubiquinone ring. Elongation of the distance between the ubiquinone ring and the phenoxybenzamide unit did not recover the electron accepting activity. The structure/activity study showed that high structural specificity of the phenoxybenzamide moiety is required to act as a potent inhibitor of complex I. These findings indicate that binding of the HUs to complex I is mainly decided by some specific interaction of the phenoxybenzamide moiety with the enzyme. It is of interest that an analogous bulky and hydrophobic substructure can be commonly found in recently registered synthetic pesticides the action site of which is mitochondrial complex I.  相似文献   

3.
We have synthesized Deltalac-acetogenins that are new acetogenin mimics possessing two n-alkyl tails without an alpha,beta-unsaturated gamma-lactone ring and suggested that their inhibition mechanism may be different from that of common acetogenins [Hamada et al. (2004) Biochemistry 43, 3651-3658]. To elucidate the inhibition mechanism of Deltalac-acetogenins in more detail, we carried out wide structural modifications of original Deltalac-acetogenins and characterized the inhibitory action with bovine heart mitochondrial complex I. In contrast to common acetogenins, both the presence of adjacent bis-THF rings and the stereochemistry around the hydroxylated bis-THF rings are important structural factors required for potent inhibition. The inhibitory potency of a derivative possessing an n-butylphenyl ether structure (compound 7) appeared to be superior to that of the original Deltalac-acetogenins and equivalent to that of bullatacin, one of the most potent natural acetogenins. Double-inhibitor titration of steady-state complex I activity showed that the extent of inhibition of compound 7 and bullatacin is not additive, suggesting that the binding sites of the two inhibitors are not identical. Competition tests using a fluorescent ligand indicated that the binding site of compound 7 does not overlap with that of other complex I inhibitors. The effects of compound 7 on superoxide production from complex I are also different from those of other complex I inhibitors. Our results clearly demonstrate that Deltalac-acetogenins are a novel type of inhibitor acting at the terminal electron-transfer step of bovine complex I.  相似文献   

4.
Studies on the inhibition mechanism of acetogenins, the most potent inhibitors of complex I, are useful to elucidate the structural and functional features of the terminal electron-transfer step of this enzyme. We synthesized acetogenin mimics that possess two alkyl tails without a gamma-lactone ring, named Deltalac-acetogenin, and examined their inhibitory action on bovine heart mitochondrial complex I. Unexpectedly, the Deltalac-acetogenin carrying two n-undecanyl groups (compound 3) elicited very potent inhibition comparable to that of bullatacin. The inhibitory potency of compound 3 markedly decreased with shortening the length of either or both alkyl tails, indicating that symmetric as well as hydrophobic properties of the inhibitor are important for the inhibition. Both acetylation and deoxygenation of either or both of two OH groups adjacent to the tetrahydrofuran (THF) rings resulted in a significant decrease in inhibitory potency. These structural dependencies of the inhibitory action of Deltalac-acetogenins are in marked contrast to those of ordinary acetogenins. Double-inhibitor titration of steady-state complex I activity showed that inhibition of compound 3 and bullatacin are not additive, though the inhibition site of both inhibitors is downstream of iron-sulfur cluster N2. Our results indicate that the mode of inhibitory action of Deltalac-acetogenins differs from that of ordinary acetogenins. Therefore, Deltalac-acetogenins can be regarded as a novel type of inhibitor acting on the terminal electron-transfer step of complex I.  相似文献   

5.
The NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial respiratory chain is by far the largest and most complicated of the proton-translocating enzymes involved in the oxidative phosphorylation. Many clues regarding the electron pathways from matrix NADH to membrane ubiquinone and the links of this process with the translocation of protons are highly controversial. Different types of inhibitors become valuable tools to dissect the electron and proton pathways of this complex enzyme. Therefore, further knowledge of the mode of action of complex I inhibitors is needed to understand the underlying mechanism of energy conservation. This study presents for the first time a detailed exploration of the inhibitory action of the Annonaceous acetogenins, the most powerful inhibitors of the mammalian enzyme, taking as the head-series rolliniastatin-1, rolliniastatin-2, and corossolin. Despite their close chemical resemblance, each of them inhibits the complex I with different kinetic features reflecting differential binding to the enzyme.  相似文献   

6.
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a highly complicated, membrane-bound enzyme. It is central to energy transduction, an important source of cellular reactive oxygen species, and its dysfunction is implicated in neurodegenerative and muscular diseases and in aging. Here, we describe the effects of Zn2+ on complex I to define whether complex I may contribute to mediating the pathological effects of zinc in states such as ischemia and to determine how Zn2+ can be used to probe the mechanism of complex I. Zn2+ inhibits complex I more strongly than Mg2+, Ca2+, Ba2+, and Mn2+ to Cu2+ or Cd2+. It does not inhibit NADH oxidation or intramolecular electron transfer, so it probably inhibits either proton transfer to bound quinone or proton translocation. Thus, zinc represents a new class of complex I inhibitor clearly distinct from the many ubiquinone site inhibitors. No evidence for increased superoxide production by zinc-inhibited complex I was detected. Zinc binding to complex I is mechanistically complicated. During catalysis, zinc binds slowly and progressively, but it binds rapidly and tightly to the resting state(s) of the enzyme. Reactivation of the inhibited enzyme upon the addition of EDTA is slow, and inhibition is only partially reversible. The IC50 value for the Zn2+ inhibition of complex I is high (10-50 microm, depending on the enzyme state); therefore, complex I is unlikely to be a major site for zinc inhibition of the electron transport chain. However, the slow response of complex I to a change in Zn2+ concentration may enhance any physiological consequences.  相似文献   

7.
NADH:ubiquinone oxidoreductase (complex I) is the first, largest and most complicated enzyme of the mitochondrial electron transport chain. Photoaffinity labeling with the highly potent and specific inhibitor trifluoromethyldiazirinyl-[(3)H]pyridaben ([(3)H]TDP) labels only the PSST and ND1 subunits of complex I in electron transport particles. PSST is labeled at a high-affinity site responsible for inhibition of enzymatic activity while ND1 is labeled at a low-affinity site not related to enzyme inhibition. In this study we found, as expected, that 13 complex I inhibitors decreased labeling at the PSST site without effect on ND1 labeling. However, there were striking exceptions where an apparent interaction was found between the PSST and ND1 subunits: preincubation with NADH increases PSST labeling and decreases ND1 labeling; the very weak complex I inhibitor 1-methyl-4-phenylpyridinium ion (MPP(+)) and the semiquinone analogue stigmatellin show the opposite effect with increased labeling at ND1 coupled to decreased labeling at PSST in a concentration- and time-dependent manner. MPP(+), stigmatellin and ubisemiquinone have similarly positioned centers of highly negative and positive electrostatic potential surfaces. Perhaps the common action of MPP(+) and stigmatellin on the functional coupling of the PSST and ND1 subunits is initiated by binding at a semiquinone binding site in complex I.  相似文献   

8.
Studies of the structure–activity relationships of ubiquinones and specific inhibitors are helpful to probe the structural and functional features of the ubiquinone reduction site of bovine heart mitochondrial complex I. Bulky exogenous short-chain ubiquinones serve as sufficient electron acceptors from the physiological ubiquinone reduction site of bovine complex I. This feature is in marked contrast to other respiratory enzymes such as mitochondrial complexes II and III. For various complex I inhibitors, including the most potent inhibitors, acetogenins, the essential structural factors that markedly affect the inhibitory potency are not necessarily obvious. Thus, the loose recognition by the enzyme of substrate and inhibitor structures may reflect the large cavitylike structure of the ubiquinone (or inhibitor) binding domain in the enzyme. On the other hand, several phenomena are difficult to explain by a simple one-catalytic site model for ubiquinone.  相似文献   

9.
NADH:ubiquinone oxidoreductase (complex I) is a major source of reactive oxygen species in mitochondria and a contributor to cellular oxidative stress. In isolated complex I the reduced flavin is known to react with molecular oxygen to form predominantly superoxide, but studies using intact mitochondria contend that superoxide may result from a semiquinone species that responds to the proton-motive force (Δp) also. Here, we use bovine heart submitochondrial particles to show that a single mechanism describes superoxide production by complex I under all conditions (during both NADH oxidation and reverse electron transfer). NADH-induced superoxide production is inhibited by complex I flavin-site inhibitors but not by inhibitors of ubiquinone reduction, and it is independent of Δp. Reverse electron transfer (RET) through complex I in submitochondrial particles, driven by succinate oxidation and the Δp created by ATP hydrolysis, reduces the flavin, leading to NAD(+) and O(2) reduction. RET-induced superoxide production is inhibited by both flavin-site and ubiquinone-reduction inhibitors. The potential dependence of NADH-induced superoxide production (set by the NAD(+) potential) matches that of RET-induced superoxide production (set by the succinate potential and Δp), and they both match the potential dependence of the flavin. Therefore, both NADH- and RET-induced superoxide are produced by the flavin, according to the same molecular mechanism. The unified mechanism describes how reactive oxygen species production by complex I responds to changes in cellular conditions. It establishes a route to understanding causative connections between the enzyme and its pathological effects and to developing rational strategies for addressing them.  相似文献   

10.
Additional characterization of complex I, rotenone-sensitive NADH:ubiquinone oxidoreductase, in the mitochondria of Trypanosoma brucei brucei has been obtained. Both proline:cytochrome c reductase and NADH:ubiquinone oxidoreductase of procyclic T. brucei were inhibited by the specific inhibitors of complex I rotenone, piericidin A, and capsaicin. These inhibitors had no effect on succinate: cytochrome c reductase activity. Antimycin A, a specific inhibitor of the cytochrome bc1 complex (ubiquinol:cytochrome c oxidoreductase), blocked almost completely cytochrome c reductase activity with either proline or succinate as electron donor, but had no inhibitory effect on NADH:ubiquinone oxidoreductase activity. The rotenone-sensitive NADH:ubiquinone oxidoreductase of procyclic T. brucei was partially purified by sucrose density centrifugation of mitochondria solubilized with dodecyl-beta-D-maltoside, with an approximately eightfold increase in specific activity compared to that of the mitochondrial membranes. Four polypeptides of the partially purified enzyme were identified as the homologous subunits of complex I (51 kDa, PSST, TYKY, and ND4) by immunoblotting with antibodies raised against subunits of Paracoccus denitrificans and against synthetic peptides predicted from putative complex I subunit genes encoded by mitochondrial and nuclear T. brucei DNA. Blue Native polyacrylamide gel electrophoresis of T. brucei mitochondrial membrane proteins followed by immunoblotting revealed the presence of a putative complex I with a molecular mass of 600 kDa, which contains a minimum of 11 polypeptides determined by second-dimensional Tricine-SDS/PAGE including the 51 kDa, PSST and TYKY subunits.  相似文献   

11.
Neither the route of electron transport nor the sites or mechanism of superoxide production in mitochondrial complex I has been established. We examined the rates of superoxide generation (measured as hydrogen peroxide production) by rat skeletal muscle mitochondria under a variety of conditions. The rate of superoxide production by complex I during NADH-linked forward electron transport was less than 10% of that during succinate-linked reverse electron transport even when complex I was fully reduced by pyruvate plus malate in the presence of the complex III inhibitor, stigmatellin. This asymmetry was not explained by differences in protonmotive force or its components. However, when inhibitors of the quinone-binding site of complex I were added in the presence of ATP to generate a pH gradient, there was a rapid rate of superoxide production by forward electron transport that was as great as the rate seen with reverse electron transport at the same pH gradient. These observations suggest that quinone-binding site inhibitors can make complex I adopt the highly radical-producing state that occurs during reverse electron transport. Despite complete inhibition of NADH: ubiquinone oxidoreductase activity in each case, different classes of quinone-binding site inhibitor (rotenone, piericidin, and high concentrations of myxothiazol) gave different rates of superoxide production during forward electron transport (the rate with myxothiazol was twice that with rotenone) suggesting that the site of rapid superoxide generation by complex I is in the region of the ubisemiquinone-binding sites and not upstream at the flavin or low potential FeS centers.  相似文献   

12.
We synthesized a series of Deltalac-acetogenins in which the two alkyl side chains were systematically modified, and examined their inhibitory effect on bovine heart mitochondrial complex I (NADH-ubiquinone oxidoreductase). The results revealed that the physicochemical properties of the side chains, such as the balance of hydrophobicity and the width (or bulkiness) of the chains, are important structural factors for a potent inhibitory effect of amphiphilic Deltalac-acetogenins. This is probably because such properties decide the precise location of the hydrophilic bis-THF ring moiety in the enzyme embedded in the inner mitochondrial membrane.  相似文献   

13.
Atpenins and harzianopyridone represent a unique class of penta-substituted pyridine-based natural products that are potent inhibitors of complex II (succinate-ubiquinone oxidoreductase) in the mitochondrial respiratory chain. These compounds block electron transfer in oxidative phosphorylation by inhibiting oxidation of succinate to fumarate and the coupled reduction of ubiquinone to ubiquinol. From our investigations of complex II inhibitors as potential agricultural fungicides, we report here on the synthesis and complex II inhibition for a series of synthetic atpenin analogs against both mammalian and fungal forms of the enzyme. Synthetic atpenin 2e provided optimum mammalian and fungal inhibition with slightly higher potency than natural occurring atpenin A5.  相似文献   

14.
Determination of the number of ubiquinone- and inhibitor-binding sites in the mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a controversial question with a direct implication for elaborating a suitable model to explain the bioenergetic mechanism of this complicated enzyme. We have used combinations of both selective inhibitors and common ubiquinone-like substrates to demonstrate the multiplicity of the reaction centers in the complex I in contrast with competition studies that have suggested the existence of a unique binding site for ubiquinone. Our results provide new evidence for the existence of at least two freely exchangeable ubiquinone-binding sites with different specificity for substrates, as well as for a different kinetic interaction of inhibitors with the enzyme.  相似文献   

15.
Koji Sekiguchi 《BBA》2009,1787(9):1106-7891
125I-labeled (trifluoromethyl)phenyldiazirinyl acetogenin, [125I]TDA, a photoaffinity labeling probe of acetogenin, photo-cross-links to the ND1 subunit of bovine heart mitochondrial NADH-ubiquinone oxidoreductase (complex I) with high specificity [M. Murai, A. Ishihara, T. Nishioka, T. Yagi, and H. Miyoshi, (2007) The ND1 subunit constructs the inhibitor binding domain in bovine heart mitochondrial complex I, Biochemistry 46 6409-6416.]. To identify the binding site of [125I]TDA in the ND1 subunit, we carried out limited proteolysis of the subunit cross-linked by [125I]TDA using various proteases and carefully analyzed the fragmentation patterns. Our results revealed that the cross-linked residue is located within the region of the 4th to 5th transmembrane helices (Val144-Glu192) of the subunit. It is worth noting that an excess amount of short-chain ubiquinones such as ubiquinone-2 (Q2) and 2-azido-Q2 suppressed the cross-linking by [125I]TDA in a concentration-dependent way. Although the question of whether the binding sites for ubiquinone and different inhibitors in complex I are identical remains to be answered, the present study provided, for the first time, direct evidence that an inhibitor (acetogenin) and ubiquinone competitively bind to the enzyme. Considering the present results along with earlier photoaffinity labeling studies, we propose that not all inhibitors acting at the terminal electron transfer step of complex I necessarily bind to the ubiquinone binding site itself.  相似文献   

16.
Generation of reactive oxygen species (ROS) is increasingly recognized as an important cellular process involved in numerous physiological and pathophysiological processes. Complex I (NADH:ubiquinone oxidoreductase) is considered as one of the major sources of ROS within mitochondria. Yet, the exact site and mechanism of superoxide production by this large membrane-bound multiprotein complex has remained controversial. Here we show that isolated complex I from Yarrowia lipolytica forms superoxide at a rate of 0.15% of the rate measured for catalytic turnover. Superoxide production is not inhibited by ubiquinone analogous inhibitors. Because mutant complex I lacking a detectable iron-sulfur cluster N2 exhibited the same rate of ROS production, this terminal redox center could be excluded as a source of electrons. From the effect of different ubiquinone derivatives and pH on this side reaction of complex I we concluded that oxygen accepts electrons from FMNH2 or FMN semiquinone either directly or via more hydrophilic ubiquinone derivatives.  相似文献   

17.
Iron–sulfur cluster N2 of complex I (proton pumping NADH:quinone oxidoreductase) is the immediate electron donor to ubiquinone. At a distance of only ~ 7 Å in the 49-kDa subunit, a highly conserved tyrosine is found at the bottom of the previously characterized quinone binding pocket. To get insight into the function of this residue, we have exchanged it for six different amino acids in complex I from Yarrowia lipolytica. Mitochondrial membranes from all six mutants contained fully assembled complex I that exhibited very low dNADH:ubiquinone oxidoreductase activities with n-decylubiquinone. With the most conservative exchange Y144F, no alteration in the electron paramagnetic resonance spectra of complex I was detectable. Remarkably, high dNADH:ubiquinone oxidoreductase activities were observed with ubiquinones Q1 and Q2 that were coupled to proton pumping. Apparent Km values for Q1 and Q2 were markedly increased and we found pronounced resistance to the complex I inhibitors decyl-quinazoline-amine (DQA) and rotenone. We conclude that Y144 directly binds the head group of ubiquinone, most likely via a hydrogen bond between the aromatic hydroxyl and the ubiquinone carbonyl. This places the substrate in an ideal distance to its electron donor iron–sulfur cluster N2 for efficient electron transfer during the catalytic cycle of complex I.  相似文献   

18.
Dicyclohexylcarbodi-imide (DCCD) inhibition of NADH: ubiquinone oxidoreductase was studied in submitochondrial particles and in the isolated form, together with the binding of the reagent to the enzyme. DCCD inhibited the isolated enzyme in a time- and concentration-dependent manner. Over the concentration range studied, a maximum inhibition of 85% was attained within 60 min. The time course for the binding of DCCD to the enzyme was similar to that of activity inhibition. The NADH:ubiquinone oxidoreductase activity of the submitochondrial particles was also sensitive to DCCD, and the locus of binding of the inhibitor was studied by subsequent resolution of the enzyme into subunit polypeptides. Only two subunits (molecular masses 13.7 and 21.5 kDa) were labelled by [14C]DCCD, whereas, when the enzyme in its isolated form was treated with [14C]DCCD, six subunits (13.7, 16.1, 21.5, 39, 43 and 53 kDa) were labelled. Comparison with the subunit labelling of F1F0-ATPase and ubiquinol:cytochrome c oxidoreductase indicated that the labelling pattern of NADH:ubiquinone oxidoreductase, and enzyme complex with a multitude of subunits, is unique and not due to contamination by other inner-membrane proteins. The correlation between the electron- and proton-transport functions and the DCCD-binding components remains to be established.  相似文献   

19.
An inducer of acquired disease resistance in plants, benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester, exhibited direct, concentration-dependent inhibition of the NADH:ubiquinone oxidoreductase activity of complex I of the mitochondrial electron transport chain of cultured tobacco cells. The complex I activity was less sensitive to inhibition by salicylic acid, an endogenous activator of acquired disease resistance. Using a dichlorodihydrofluorescein assay, it was found that benzothiadiazole, salicylic acid and the complex I inhibitor rotenone, increased reactive oxygen species production within cells in a concentration-dependent manner. The results indicate that both benzothiadiazole and salicylic acid affect the mitochondria of treated plant cells and result in increased production of reactive oxygen species. The biochemical basis of this response could be related to the inhibition of the NADH:ubiquinone oxidoreductase activity of complex I that results in channelling of electrons via complex II, with concomitant higher levels of superoxide production.  相似文献   

20.
Proton pumping NADH:ubiquinone oxidoreductase (complex I) is the most complicated and least understood enzyme of the respiratory chain. All redox prosthetic groups reside in the peripheral arm of the L-shaped structure. The NADH oxidation domain harbouring the FMN cofactor is connected via a chain of iron–sulfur clusters to the ubiquinone reduction site that is located in a large pocket formed by the PSST- and 49-kDa subunits of complex I. An access path for ubiquinone and different partially overlapping inhibitor binding regions were defined within this pocket by site directed mutagenesis. A combination of biochemical and single particle analysis studies suggests that the ubiquinone reduction site is located well above the membrane domain. Therefore, direct coupling mechanisms seem unlikely and the redox energy must be converted into a conformational change that drives proton pumping across the membrane arm. It is not known which of the subunits and how many are involved in proton translocation. Complex I is a major source of reactive oxygen species (ROS) that are predominantly formed by electron transfer from FMNH2. Mitochondrial complex I can cycle between active and deactive forms that can be distinguished by the reactivity towards divalent cations and thiol-reactive agents. The physiological role of this phenomenon is yet unclear but it could contribute to the regulation of complex I activity in-vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号