首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify functional domains of G-protein-coupled receptors that control pathway activation, ligand discrimination, and receptor regulation, we have used as a model the alpha-factor receptor (STE2 gene product) of the yeast Saccharomyces cerevisiae. From a collection of random mutations introduced in the region coding for the third cytoplasmic loop of Ste2p, six ste2sst alleles were identified by genetic screening methods that increased alpha-factor sensitivity 2.5- to 15-fold. The phenotypic effects of ste2sst and sst2 mutations were not additive, consistent with models in which the third cytoplasmic loop of the alpha-factor receptor and the regulatory protein Sst2p control related aspects of pheromone response and/or desensitization. Four ste2sst mutations did not dramatically alter cell surface expression or agonist binding affinity of the receptor; however, they did permit detectable responses to an alpha-factor antagonist. One ste2sst allele increased receptor binding affinity for alpha-factor and elicited stronger responses to antagonist. Results of competition binding experiments indicated that wild-type and representative mutant receptors bound antagonist with similar affinities. The antagonist-responsive phenotypes caused by ste2sst alleles were therefore due to defects in the ability of receptors to discriminate between agonist and antagonist peptides. One ste2sst mutation caused rapid, ligand-independent internalization of the receptor. These results demonstrate that the third cytoplasmic loop of the alpha-factor receptor is a multifunctional regulatory domain that controls pathway activation and/or desensitization and influences the processes of receptor activation, ligand discrimination, and internalization.  相似文献   

2.
MAT alpha haploids with mutations in the STE13 or KEX2 gene, and MATa haploids with mutations in the STE6 or STE14 gene, do not mate with wild-type cells of the opposite mating type. We found that such mutants were able to mate with partners that carry mutations (sst1 and sst2) that cause cells to be supersensitive to yeast mating pheromone action. Mating ability of MAT alpha ste13 and MAT alpha kex2 mutants could also be restored by adding normal MAT alpha cells to mating mixtures or by adding just the appropriate purified pheromone (alpha-factor). Therefore, the mating deficiencies caused by the ste13 and kex2 lesions, and by inference, the ste6 and ste14 mutations, appear to result only from secretion of an insufficient amount of pheromone or a nonfunctional pheromone.  相似文献   

3.
Down regulation of the alpha-factor pheromone receptor in S. cerevisiae   总被引:35,自引:0,他引:35  
D D Jenness  P Spatrick 《Cell》1986,46(3):345-353
The peptide pheromone, alpha-factor, was found to elicit down regulation of receptor sites on yeast a cell targets. Cellular uptake of alpha-factor accompanied the loss of receptor sites. Receptor-deficient a cells bearing a deletion of the STE2 gene were unable to internalize alpha-factor. Cultures were found to reaccumulate receptor sites following the initial period of down regulation; reaccumulation was dependent upon protein synthesis. Pheromone-resistant mutants, ste4-3 and ste5-3, retained the ability to down regulate receptors but failed to show reaccumulation. Our results suggest that alpha-factor-receptor complexes enter the cell by receptor-mediated endocytosis and that receptors are continuously lost and resynthesized in the presence of alpha-factor. We found no reduction of alpha-factor binding capacity in a cell cultures that had adapted to alpha-factor.  相似文献   

4.
5.
6.
F. R. Cross 《Genetics》1990,126(2):301-308
A dominant mutation (DAF2-2) resulting in resistance to the mating pheromone alpha-factor in Saccharomyces cerevisiae MATa cells was identified and characterized genetically. Whereas wild-type cells induce a high level of the FUS1 mRNA from a low baseline on exposure to alpha-factor, DAF2-2 cells were constitutive producers of an intermediate level of FUS1 RNA; the level was increased only modestly by alpha-factor. FUS1 constitutivity required STE4, STE5 and STE18, but did not require STE2, the alpha-factor receptor gene. DAF2-2 suppressed the alpha-factor supersensitivity of a STE2 C-terminal truncation, and suppressed lethality due to scg1 mutations. Thus DAF2-2 may act by uncoupling the signaling pathway from alpha-factor binding at some point in the pathway between Scg1 inactivation and the action of Ste4, Ste5 and Ste18; this uncoupling might occur at the expense of partial constitutive activation of the pathway. DAF2-2 suppressed the unconditional cell-cycle arrest phenotype of a dominant "constitutive signaling" allele of STE4 (STE4Hpl), although the constitutive FUS1 phenotype of DAF2-2 was suppressed by ste4 null mutations; therefore DAF2-2 may directly affect the performance of the STE4 step.  相似文献   

7.
alpha-Factor pheromone inhibits division of yeast a cells. After prolonged exposure to alpha-factor, the cells adapt to the stimulus and resume cell division. The sst2 mutation is known to inhibit adaptation. This report examines adaptation in scg1 (also designated gpa1) and STE4Hpl (Hpl indicates haploid lethal) mutants that exhibit constitutive activation of the pheromone response pathway. Recovery of the STE4Hpl mutant was blocked by the sst2-1 mutation, whereas recovery of the scg1-7 mutant was not completely blocked by sst2-1. These results indicate that both SST2-dependent and -independent mechanisms regulate postreceptor events in the pheromone response pathway. Down regulation of receptors in response to alpha-factor was independent of the signal that was generated in the scg1 mutant.  相似文献   

8.
Mutations in the Saccharomyces cerevisiae alpha-factor receptor that lead to improved response to Saccharomyces kluyveri alpha-factor were identified and sequenced. Mutants were isolated from cells bearing randomly mutagenized receptor gene (STE2) plasmids by an in vivo screen. Five mutations lead to substitutions in hydrophobic segments in the core of the receptor (M54I, S145L, S145L-S219L, A229V, L255S-S288P). Remarkably, strains expressing these mutant receptors exhibited positive pheromone responses to desTrp1,Ala3-alpha-factor, an analog that normally blocks these responses. The M54I mutation appeared to affect only ligand specificity. The other mutations conferred additional effects on signaling or recovery. Two mutants were more sensitive to alpha-factor than wild type (S145L, A229V). One mutant was more sensitive to alpha-factor-induced cell cycle arrest initially, but then recovered more efficiently (S145L-S219L). One mutant (L255S-S288P) conferred positive pheromone responses to alpha-factor as assayed by FUS1-lacZ reporter induction, but did not display growth arrest. The hydrophobic receptor core thus appears to control activation by some ligands and to play roles in aspects of signal transduction and recovery.  相似文献   

9.
Temperature-sensitive mutations that produce insensitivity to division arrest by alpha-factor, a mating pheromone, were isolated in an MATa strain of Saccharomyces cerevisiae and shown by complementation studies to difine eight genes. All of these mutations (designated ste) produce sterility at the restrictive temperature in MATa cells, and mutations in seven of the genes produce sterility in MAT alpha cells. In no case was the sterility associated with these mutations coorectible by including wild-type cells of the same mating type in the mating test nor did nay of the mutants inhibit mating of the wild-type cells; the defect appears to be intrinsic to the cell for mutations in each of the genes. Apparently, none of the mutants is defective exclusively in division arrest by alpha-factor, as the sterility of none is suppressed by a temperature-sensitive cdc 28 mutation (the latter imposes division arrest at the correct cell cycle stage for mating). The mutants were examined for features that are inducible in MATa cells by alpha-factor (agglutinin synthesis as well as division arrest) and for the characteristics that constitutively distinguish MATa from MAT alpha cells (a-factor production, alpha-factor destruction). ste2 Mutants are defective specifically in the two inducible properties, whereas ste4, 5, 7, 8, 9, 11, and 12 mutants are defective, to varying degrees, in constitutive as well as inducible aspects. Mutations in ste8 and 9 assume a polar budding pattern unlike either MATa or MAT alpha cells but characteristic of MATa/alpha cells. This study defines seven genes that function in two cell types (MATa and alpha) to control the differentiation of cell type and one gene, ste2, that functions exclusively in MATa cells to mediate responsiveness to polypeptide hormone.  相似文献   

10.
11.
12.
The alpha-pheromone receptor encoded by the STE2 gene contains seven potential transmembrane domains. Its ability to transduce the pheromone signal is thought to require the action of a G protein. As an initial step toward defining the structural features of the receptor required for its activity, we examined the phenotypic consequences of linker insertion mutations (12 bp) at 10 different sites in the STE2 gene. Three mutant classes, which correspond to three different regions of the receptor protein, were observed. 1) The two mutants affecting the C-terminal region (C-terminal mutants) were essentially wild type for mating efficiency, pheromone binding, and pheromone sensitivity. 2) The three mutants in the N-terminus mated with reduced efficiency, showed reduced pheromone binding capacity, and were partially defective in pheromone induction of agglutinin production and cell division arrest. Increased gene dosage of these N-terminal alleles suppressed their mutant phenotypes, whereas the sst2-1 mutation, which blocks adaptation to pheromone, did not result in suppression. Thus, the N-terminal mutants were apparently limited by receptor production, but not by the adaptation function SST2. 3) The five mutants in the central region containing the seven transmembrane segments (central mutants) were completely defective for mating and did not respond to pheromone, but could be distinguished by their ability to bind pheromone. Inserts in or near transmembrane domains 2 and 4 blocked pheromone binding, whereas inserts into transmembrane domains 1, 5, and 6 retained partial pheromone binding activity even though they failed to transduce a signal. The central mutants were not suppressed by increased gene dosage, and one mutant (ste2-/101) was partially suppressed by sst2-1. Furthermore, the central core mutants were also distinguished from one another in that three of the five mutants were able to partially complement the temperature sensitivity of ste2-3.  相似文献   

13.
The role of alpha-factor structural genes MF alpha 1 and MF alpha 2 in alpha-factor production and mating has been investigated by the construction of mf alpha 1 and mf alpha 2 mutations that totally eliminate gene function. An mf alpha 1 mutant in which the entire coding region is deleted shows a considerable decrease in alpha-factor production and a 75% decrease in mating. Mutations in mf alpha 2 have little or no effect on alpha-factor production or mating. The mf alpha 1 mf alpha 2 double mutants are completely defective in mating and alpha-factor production. These results indicate that at least one alpha-factor structural gene product is required for mating in MAT alpha cells, that MF alpha 1 is responsible for the majority of alpha-factor production, and that MF alpha 1 and MF alpha 2 are the only active alpha-factor genes.  相似文献   

14.
15.
The alpha-factor pheromone binds to specific cell surface receptors on Saccharomyces cerevisiae a cells. The pheromone is then internalized, and cell surface receptors are down-regulated. At the same time, a signal is transmitted that causes changes in gene expression and cell cycle arrest. We show that the ability of cells to internalize alpha-factor is constant throughout the cell cycle, a cells are also able to respond to pheromone throughout the cycle even though there is cell cycle modulation of the expression of two pheromone-inducible genes, FUS1 and STE2. Both of these genes are expressed less efficiently near or just after the START point of the cell cycle in response to alpha-factor. For STE2, the basal level of expression is modulated in the same manner.  相似文献   

16.
Genes required for mating by a and alpha cells of Saccharomyces cerevisiae (STE, "sterile," genes) encode products such as peptide pheromones, pheromone receptors, and proteins responsible for pheromone processing. a-specific STE genes are those required for mating by a cells but not by alpha cells. To identify new a-specific STE genes, we have employed a novel strategy that enabled us to determine if a ste mutant defective in mating as a is also defective in mating as alpha without the need to do crosses. This technique involved a strain (K12-14b) of genotype mata1 HML alpha HMR alpha sir3ts, which mates as a at 25 degrees and as alpha at 34 degrees. We screened over 40,000 mutagenized colonies derived from K12-14b and obtained 28 a-specific ste mutants. These strains contained mutations in three known a-specific genes--STE2, STE6 and STE14--and in a new gene, STE16. ste16 mutants are defective in the production of the pheromone, a-factor, and exhibit slow growth. Based on the distribution of a-specific ste mutants described here, we infer that we have identified most if not all nonessential genes that can give rise to a-specific mating defects.  相似文献   

17.
18.
19.
Mutations gef1, stp22, STP26, and STP27 in Saccharomyces cerevisiae were identified as suppressors of the temperature-sensitive alpha-factor receptor (mutation ste2-3) and arginine permease (mutation can1(ts)). These suppressors inhibited the elimination of misfolded receptors (synthesized at 34 degrees C) as well as damaged surface receptors (shifted from 22 to 34 degrees C). The stp22 mutation (allelic to vps23 [M. Babst and S. Emr, personal communication] and the STP26 mutation also caused missorting of carboxypeptidase Y, and ste2-3 was suppressed by mutations vps1, vps8, vps10, and vps28 but not by mutation vps3. In the stp22 mutant, both the mutant and the wild-type receptors (tagged with green fluorescent protein [GFP]) accumulated within an endosome-like compartment and were excluded from the vacuole. GFP-tagged Stp22p also accumulated in this compartment. Upon reaching the vacuole, cytoplasmic domains of both mutant and wild-type receptors appeared within the vacuolar lumen. Stp22p and Gef1p are similar to tumor susceptibility protein TSG101 and voltage-gated chloride channel, respectively. These results identify potential elements of plasma membrane quality control and indicate that cytoplasmic domains of membrane proteins are translocated into the vacuolar lumen.  相似文献   

20.
Activation of G protein coupled receptors (GPCRs) by binding of ligand is the initial event in diverse cellular signaling pathways. To examine the frequency and diversity of mutations that cause constitutive activation of one particular GPCR, the yeast alpha-factor receptor, we screened libraries of random mutations for constitutive alleles. In initial screens for mutant receptor alleles that exhibit signaling in the absence of added ligand, 14 different point mutations were isolated. All of these 14 mutants could be further activated by alpha-factor. Ten of the mutants also acquired the ability to signal in response to binding of desTrp(1)?Ala(3)?lpha-factor, a peptide that acts as an antagonist toward normal alpha-factor receptors. Of these 10 mutants, at least eight alleles residing in the third, fifth, sixth, and seventh transmembrane segments exhibit bona fide constitutive signaling. The remaining alleles are hypersensitive to alpha-factor rather than constitutive. They can be activated by low concentrations of endogenous alpha-factor present in MATa cells. The strongest constitutively active receptor alleles were recovered multiple times from the mutational libraries, and extensive mutagenesis of certain regions of the alpha-factor receptor did not lead to recovery of any additional constitutive alleles. Thus, only a limited number of mutations is capable of causing constitutive activation of this receptor. Constitutive and hypersensitive signaling by the mutant receptors is partially suppressed by coexpression of normal receptors, consistent with preferential association of the G protein with unactivated receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号