首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cartilaginous tissues, such as articular cartilage and the annulus fibrosus, exhibit orthotropic behavior with highly asymmetric tensile–compressive responses. Due to this complex behavior, it is difficult to develop accurate stress constitutive equations that are valid for finite deformations. Therefore, we have developed a bimodular theory for finite deformations of elastic materials that allows the mechanical properties of the tissue to differ in tension and compression. In this paper, we derive an orthotropic stress constitutive equation that is second-order in terms of the Biot strain tensor as an alternative to traditional exponential type equations. Several reduced forms of the bimodular second-order equation, with six to nine parameters, and a bimodular exponential equation, with seven parameters, were fit to an experimental dataset that captures the highly asymmetric and orthotropic mechanical response of cartilage. The results suggest that the bimodular second-order models may be appealing for some applications with cartilaginous tissues.  相似文献   

2.
The problem of pressure wave propagation through a viscous fluid contained in an orthotropic elastic tube is considered in connection with arterial blood flow. Solutions to the fluid flow and elasticity equations are obtained for the presence of a reflected wave. Numerical results are presented for both isotropic and orthotropic elastic tubes. In particular, the pressure pulse, flow rate, axial fluid velocity, and wall displacements are plotted vs. time at various stations along the ascending aorta of man. The results indicate an increase in the peak value of the pressure pulse and a decrease in the flow rate as the pulse propagates away from the heart. Finally, the velocity of wave propagation depends mainly on the tangential modulus of elasticity of the arterial wall, and anisotropy of the wall accounts in part for the reduction of longitudinal movements and an increase in the hydraulic resistance.  相似文献   

3.
This contribution presents a novel constitutive model in order to simulate an orthotropic rate-dependent behaviour of the passive myocardium at finite strains. The motivation for the consideration of orthotropic viscous effects in a constitutive level lies in the disagreement between theoretical predictions and experimentally observed results. In view of experimental observations, the material is deemed as nearly incompressible, hyperelastic, orthotropic and viscous. The viscoelastic response is formulated by means of a rheological model consisting of a spring coupled with a Maxwell element in parallel. In this context, the isochoric free energy function is decomposed into elastic equilibrium and viscous non-equilibrium parts. The baseline elastic response is modelled by the orthotropic model of Holzapfel and Ogden [Holzapfel GA, Ogden RW. 2009. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans Roy Soc A Math Phys Eng Sci. 367:3445–3475]. The essential aspect of the proposed model is the account of distinct relaxation mechanisms for each orientation direction. To this end, the non-equilibrium response of the free energy function is constructed in the logarithmic strain space and additively decomposed into three anisotropic parts, denoting fibre, sheet and normal directions each accompanied by a distinct dissipation potential governing the evolution of viscous strains associated with each orientation direction. The evolution equations governing the viscous flow have an energy-activated nonlinear form. The energy storage in the Maxwell branches has a quadratic form leading to a linear stress–strain response in the logarithmic strain space. On the numerical side, the algorithmic aspects suitable for the implicit finite element method are discussed in a Lagrangian setting. The model shows excellent agreement compared to experimental data obtained from the literature. Furthermore, the finite element simulations of a heart cycle carried out with the proposed model show significant deviations in the strain field relative to the elastic solution.  相似文献   

4.
The thermodynamic restrictions on the elastic coefficients of linear orthotropic elasticity and linear transversely isotropy elasticity are recorded and it is shown that previously reported data for the elastic orthotropic constants of bone satisfy these thermodynamic restrictions.  相似文献   

5.
The nonlinear elastic response of large arteries subjected to finite deformations due to action of biaxial principal stresses, is described by simple constitutive equations. Generalized measures of strain and stress are introduced to account for material nonlinearity. This also ensures the existence of a strain energy density function. The orthotropic elastic response is described via quasi-linear relations between strains and stresses. One nonlinear parameter which defines the measures of strain and stress, and three elastic moduli are assumed to be constants. The lateral strain parameters (equivalent to Poisson's ratios in infinitesimal deformations) are deformation dependent. This dependence is defined by empirical relations developed via the incompressibility condition, and by the introduction of a fifth material parameter. The resulting constitutive model compares well with biaxial experimental data of canine carotid arteries.  相似文献   

6.
A method is illustrated for determining the effective transversely isotropic (or isotropic) elastic constants from measured orthotropic elastic constants. This method consists of constructing upper and lower bounds on the effective transversely isotropic (or isotropic) elastic constants using the known orthotropic values. This method is illustrated using three sets of elastic constants for bone. Fortunately, the upper and lower bounds are very close. Thus very good approximations for the effective transversely isotropic (or isotropic) elastic constants for cortical and cancellous bone are obtained from previously published data on the orthotropic elastic constants for those tissue types. This work is undertaken to build a greater database for the transversely isotropic elastic constants of bone with the intention of employing them in a transversely isotropic model of bone poroelasticity. An interesting aspect of the present result is that the Voigt and Reuss bounds are very tight for these anisotropic materials. This is not always the case for these bounds. Received: 14 November 2001 / Accepted: 25 February 2002  相似文献   

7.
A continuous wave technique is described for measuring the nine independent orthotropic elastic coefficients from a single cubic specimen. The side dimensions of this cubic specimen are on the order of 5 mm. Because of the small size of the specimen, the spatial resolution of material inhomogeneity using this technique is quite good. Although it is possible to apply this technique to any elastic material such as woods or metals, the elastic properties of human and canine cortical femora are presented here. The orthotropic elastic coefficients and the variation of these coefficients are presented as a function of anatomical position.  相似文献   

8.
This study deals with the viscoelastic constitutive modeling and the respective computational analysis of the human passive myocardium. We start by recapitulating the locally orthotropic inner structure of the human myocardial tissue and model the mechanical response through invariants and structure tensors associated with three orthonormal basis vectors. In accordance with recent experimental findings the ventricular myocardial tissue is assumed to be incompressible, thick-walled, orthotropic and viscoelastic. In particular, one spring element coupled with Maxwell elements in parallel endows the model with viscoelastic features such that four dashpots describe the viscous response due to matrix, fiber, sheet and fiber-sheet fragments. In order to alleviate the numerical obstacles, the strictly incompressible model is altered by decomposing the free-energy function into volumetric-isochoric elastic and isochoric-viscoelastic parts along with the multiplicative split of the deformation gradient which enables the three-field mixed finite element method. The crucial aspect of the viscoelastic formulation is linked to the rate equations of the viscous overstresses resulting from a 3-D analogy of a generalized 1-D Maxwell model. We provide algorithmic updates for second Piola–Kirchhoff stress and elasticity tensors. In the sequel, we address some numerical aspects of the constitutive model by applying it to elastic, cyclic and relaxation test data obtained from biaxial extension and triaxial shear tests whereby we assess the fitting capacity of the model. With the tissue parameters identified, we conduct (elastic and viscoelastic) finite element simulations for an ellipsoidal geometry retrieved from a human specimen.  相似文献   

9.
A finite element based method to determine the incremental elastic material properties of planar membranes was developed and evaluated. The method is applicable to tissues that exhibit inhomogeneity, geometric and material nonlinearity, and anisotropy. Markers are placed on the tissue to form a four-node quadrilateral element. The specimen is loaded to an initial reference state, then three incremental loading sets are applied and the nodal displacements recorded. One of these loadings must include shear. These data are used to solve an over-determined system of equations for the tangent stiffness matrix. The method was first verified using analytical data. Next, data obtained from a latex rubber sheet were used to evaluate experimental procedures. Finally, experiments conducted on preconditioned rat skin revealed nonlinear orthotropic behavior. The vector norm comparing the applied and calculated nodal force vectors was used to evaluate the accuracy of the solutions.  相似文献   

10.
The six non-interacting modes for stress, strain and energy in an orthotropic elastic model of human femoral cortical bone tissue are discussed and illustrated. The stress and strain modes are illustrated using the representation of the stress and strain fields around a circular hole in a flat plate of cortical bone subjected to a uniaxial field of tension as the example. The six modes play a role in the stress analysis of orthotropic elastic materials similar to the roles played by the hydrostatic and deviatoric non-interacting stress, strain and energy modes in isotropic elasticity. The biomechanical significance of the six non-interacting modes for stress, strain and energy in hard tissue is both practical and suggestive. The modes suggest a practical scheme for the representation of stress and strain fields in hard tissue. The existence of the modes suggests physical insights, for example, possible failure mechanisms or adaptation strategies possessed by the hard tissues.  相似文献   

11.
Errors induced by off-axis measurement of the elastic properties of bone   总被引:1,自引:0,他引:1  
Misalignment between the axes of measurement and the material symmetry axes of bone causes error in anisotropic elastic property measurements. Measurements of Poisson's ratio were strongly affected by misalignment errors. The mean errors in the measured Young's moduli were 9.5 and 1.3 percent for cancellous and cortical bone, respectively, at a misalignment angle of 10 degrees. Mean errors of 1.1 and 5.0 percent in the measured shear moduli for cancellous and cortical bone, respectively, were found at a misalignment angle of 10 degrees. Although, cancellous bone tissue was assumed to have orthotropic elastic symmetry, the possibility of the greater symmetry of transverse isotropy was investigated. When the nine orthotropic elastic constants were forced to approximate the five transverse isotropic elastic constants, errors of over 60 percent were introduced. Therefore, it was concluded that cancellous bone is truly orthotropic and not transversely isotropic. A similar but less strong result for cortical bone tissue was obtained.  相似文献   

12.
In many biomechanical studies, blood vessels can be modeled as pseudoelastic orthotropic materials that are incompressible (volume-preserving) under physiological loading. To use a minimum number of elastic constants to describe the constitutive behavior of arteries, we adopt a generalized Hooke's law for the co-rotational Cauchy stress and a recently proposed logarithmic-exponential strain. This strain tensor absorbs the material nonlinearity and its trace is zero for volume-preserving deformations. Thus, the relationships between model parameters due to the incompressibility constraint are easy to analyze and interpret. In particular, the number of independent elastic constants reduces from ten to seven in the orthotropic model. As an illustratory study, we fit this model to measured data of porcine coronary arteries in inflation-stretch tests. Four parameters, n (material nonlinearity), Young's moduli E? (circumferential), E? (axial), and E? (radial) are necessary to fit the data. The advantages and limitations of this model are discussed.  相似文献   

13.
Unexplained length-dependence of flexural rigidity and Young's modulus of microtubules is studied using an orthotropic elastic shell model. It is showed that vibration frequencies and buckling load predicted by the accurate orthotropic shell model are much lower than that given by the approximate isotropic beam model for shorter microtubules, although the two models give almost identical results for sufficiently long microtubules. It is this inaccuracy of the isotropic beam model used by all previous researchers that leads to reported lower flexural rigidity and Young's modulus for shorter microtubules. In particular, much lower shear modulus and circumferential Young's modulus, which only weaken flexural rigidity of shorter microtubules, are responsible for the observed length-dependence of the flexural rigidity. These results confirm that longitudinal Young's modulus of microtubules is length-independent, and the observed length-dependence of the flexural rigidity and Young's modulus is a result of strongly anisotropic elastic properties of microtubules which have a length-dependent weakening effect on flexural rigidity of shorter microtubules.  相似文献   

14.
A method is presented to find orthotropic elastic symmetries and constants directly from the elastic coefficients in the overall stiffness matrix of trabecular bone test specimens. Contrary to earlier developed techniques, this method does not require pure orthotropic behavior or additional fabric measurements. The method uses high-resolution computer reconstructions of trabecular bone specimens as input for large-scale FE-analyses to determine all the 21 elastic coefficients in the overall stiffness matrix of the specimen, using a direct mechanics approach. An optimization procedure is then used to find the coordinate transformation that yields the best orthotropic representation of this matrix. The method is illustrated here relative to two trabecular bone specimens. The techniques developed here can be used to obtain a complete characterization of the mechanical properties of trabecular architecture. With the development of in vivo reconstruction techniques, even in vivo measurements will be possible.  相似文献   

15.
Analysis of stresses and strains in bone tissues and simulation of their adaptive remodelling require exhaustive information about distribution of constitutive properties of cancellous bone and their relationships to microstructural parameters. Homogenization of "equivalent" trabecular microstructures appears to be an advantageous tool for this task. In this study, parameterized orthotropic constitutive models of cancellous bone are derived from finite element analysis of repeatable microstructure cells. The models, based on a space-filling dodecahedron, are fully three-dimensional and are parameterized with four shape parameters. Variation of the parameters allows to imitate most of typical microstructure patterns observed in real bones, along with a variety of intermediate geometries. Finite element models of cells are generated by a special-purpose structured mesh generator for any arbitrary set of shape parameter values. Static numerical tests are performed for an exhaustive number of parameter value sets (microstructure instances). Coefficients of elastic orthotropic stiffness matrix are determined as tabularized functions of elastic constants versus the shape parameters. Additionally, they are correlated to apparent density and principal fabric tensor values. Comparison of the results with micro-FE data obtained for a large set of cancellous bone specimens proves a good agreement.  相似文献   

16.
Analysis of stresses and strains in bone tissues and simulation of their adaptive remodelling require exhaustive information about distribution of constitutive properties of cancellous bone and their relationships to microstructural parameters. Homogenization of “equivalent” trabecular microstructures appears to be an advantageous tool for this task. In this study, parameterized orthotropic constitutive models of cancellous bone are derived from finite element analysis of repeatable microstructure cells. The models, based on a space-filling dodecahedron, are fully three-dimensional and are parameterized with four shape parameters. Variation of the parameters allows to imitate most of typical microstructure patterns observed in real bones, along with a variety of intermediate geometries. Finite element models of cells are generated by a special-purpose structured mesh generator for any arbitrary set of shape parameter values. Static numerical tests are performed for an exhaustive number of parameter value sets (microstructure instances). Coefficients of elastic orthotropic stiffness matrix are determined as tabularized functions of elastic constants versus the shape parameters. Additionally, they are correlated to apparent density and principal fabric tensor values. Comparison of the results with micro-FE data obtained for a large set of cancellous bone specimens proves a good agreement.  相似文献   

17.
It has been proposed that the orthotropic elastic constants of cancellous bone depend upon a tensorial measure of anisotropy called fabric as well as the tissue's structural density. Cowin (1985, Mechanics Mater, 4, 137-147; 1986, J. biomech. Engng 108, 83-88) developed explicit relationships for the elastic constant, structural density and fabric relationship. In this study the orthotropic elastic moduli, structural density, and fabric components were measured for 11 cancellous bone specimens from five bovine femora and for 75 specimens from three human proximal tibiae and fitted to these relationships using a least squares analysis. The relationships explained between 72 and 94% of the variance in the elastic constants. The relationships between the elastic constants and squared or cubed power functions of structural density had better predictive value over the entire distribution of the data than did expressions with linear functions of structural density.  相似文献   

18.
Knowledge of elastic properties and of their variation in the cortical bone of the craniofacial skeleton is indispensable for creating accurate finite-element models to explore the biomechanics and adaptation of the skull in primates. In this study, we measured elastic properties of the external cortex of the rhesus monkey craniofacial skeleton, using an ultrasonic technique. Twenty-eight cylindrical cortical specimens were removed from each of six craniofacial skeletons of adult Macaca mulatta. Thickness, density, and a set of longitudinal and transverse ultrasonic velocities were measured on each specimen to allow calculation of the elastic properties in three dimensions, according to equations derived from Newton's second law and Hooke's law. The axes of maximum stiffness were determined by fitting longitudinal velocities measured along the perimeter of each cortical specimen to a sinusoidal function. Results showed significant differences in elastic properties between different functional areas of the rhesus cranium, and that many sites have a consistent orientation of maximum stiffness among specimens. Overall, the cortical bones of the rhesus monkey skull can be modeled as orthotropic in many regions, and as transversely isotropic in some regions, e.g., the supraorbital region. There are differences from human crania, suggesting that structural differences in skeletal form relate to differences in cortical material properties across species. These differences also suggest that we require more comparative data on elastic properties in primate craniofacial skeletons to explore effectively the functional significance of these differences, especially when these differences are elucidated through modeling approaches, such as finite-element modeling.  相似文献   

19.
An alternative concept of the relationship between morphological and elastic properties of trabecular bone is presented and applied to human tissue from several anatomical locations using a digital approach. The three-dimensional morphology of trabecular bone was assessed with a microcomputed tomography system and the method of directed secants as well as the star volume procedure were used to compute mean intercept length (MIL) and average bone length (ABL) of 4 mm cubic specimens. Assuming isotropic elastic properties for the trabecular tissue, the general elastic tensors of the bone specimens were determined using the homogenization method and the closest orthotropic tensors were calculated with an optimization algorithm. The assumption of orthotropy for trabecular bone was found to improve with specimen size and hold within 6.1 percent for a 4 mm cube size. A strong global relationship (r2 = 0.95) was obtained between fabric and the orthotropic elastic tensor with a minimal set of five constants. Mean intercept length and average bone length provided an equivalent power of prediction. These results support the hypothesis that the elastic properties of human trabecular bone from an arbitrary anatomical location can be estimated from an approximation of the anisotropic morphology and a prior knowledge of tissue properties.  相似文献   

20.
Microtubules in living cells are very important component for various cellular functions as well as to maintain the cell shape. Mechanical properties of microtubules play a vital role in their functions and structure. To understand the mechanical properties of microtubules in living cells, we developed an orthotropic-Pasternak model and investigated the vibrational behavior when microtubules are embedded in surrounding elastic medium. We considered microtubules as orthotropic elastic shell and its surrounding elastic matrix as Pasternak foundation. We found that due to mechanical coupling of microtubules with elastic medium, the flexural vibration is increased with the stiffening of elastic medium. We noticed that foundation modulus (H) and shear modulus (G) have more effect on radial vibrational mode as compared to longitudinal vibrational mode and torsional vibrational mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号