共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic regulation during early frog development: glycogenic flux in Xenopus oocytes, eggs, and embryos 总被引:2,自引:0,他引:2
32P-labeled glucose 6-phosphate and phosphoenolpyruvate were injected into oocytes, fertilized eggs, and early embryos of Xenopus laevis, and the 32P label was followed into glycolytic enzymes and acid-soluble metabolites. The kinetics of labeling of phosphoglucomutase and phosphoglyceromutase and the formation of specific metabolites were used to measure carbon flux through glycolytic intermediates in these cells. In full-grown stage VI oocytes, fertilized eggs, and cells of cleaving embryos, carbon metabolism is in the glycogenic direction. Glycolytic intermediates injected into these cells were metabolized into UDP-glucose and then presumably into glycogen. Carbon flow between phosphoenolpyruvate and glucose 6-phosphate does not utilize fructose 1,6-bisphosphatase; rather, it may depend largely on enzymes of the pentose phosphate pathway. Maturation and fertilization of the oocyte did not result in a change in the qualitative pattern of metabolites formed. Pyruvate kinase, although abundant in oocytes and embryos, is essentially inactive in these cells. Pyruvate kinase also appears to be inactive in small previtellogenic stage II oocytes; however, in these cells injected glycolytic intermediates were not metabolized to UDP-glucose. 相似文献
2.
3.
32P-labeled glucose 6-phosphate, [32P]phosphoenolpyruvate, and [gamma-32P]ATP were injected into oocytes and fertilized eggs of Xenopus laevis, and the incorporation of the 32P label was followed into phospholipids. Several classes of phospholipids incorporated 32P label from the injected glycolytic intermediates, including lysophosphatidic acid, phosphatidic acid, phosphatidylinositol, and phosphatidylinositol phosphates, inferring de novo synthesis of these lipids from dihydroxyacetone phosphate or glycerol 3-phosphate. Injection of [gamma-32P]ATP into oocytes and fertilized eggs led to labeling of phosphatidylinositol phosphate and phosphatidylinositol bisphosphate, indicating an active phosphatidylinositol cycle in resting oocytes and fertilized eggs. Maturation and fertilization of the oocyte led to a qualitative change in phosphatidylinositol metabolism, increased labeling of phosphatidylinositol phosphate compared to phosphatidylinositol bisphosphate (either from glycerol 3-phosphate or from ATP). This change occurs late in the maturation process, and the new pattern of phosphatidylinositol metabolism is maintained during the rapid cleavage stages of early embryogenesis. 相似文献
4.
5.
Polyadenylated RNA was isolated from nuclei of cultured Drosophila cells, Schneider's line 2, and used as a template to synthesize a complementary DNA probe. Hybridization experiments were performed to study the relationship between nuclear and cytoplasmic RNA. About two-thirds of the nuclear polyadenylated RNA sequences exist in the cytoplasm. Experiments with fractionated cDNA probes demonstrated that RNA sequences that are frequent in the nucleus are also abundant in the cytoplasm. These findings are consistent with a precursor-product relationship in which some polyadenylated molecules in the nucleus are destined for the cytoplasm while other sequences are polyadenylated but not transferred. 相似文献
6.
Cortical and cytoplasmic flow polarity in early embryonic cells of Caenorhabditis elegans 总被引:10,自引:5,他引:5
《The Journal of cell biology》1993,121(6):1343-1355
We have examined the cortex of Caenorhabditis elegans eggs during pseudocleavage (PC), a period of the first cell cycle which is important for the generation of asymmetry at first cleavage (Strome, S. 1989. Int. Rev. Cytol. 114: 81-123). We have found that directed, actin dependent, cytoplasmic, and cortical flow occurs during this period coincident with a rearrangement of the cortical actin cytoskeleton (Strome, S. 1986. J. Cell Biol. 103: 2241-2252). The flow velocity (4-7 microns/min) is similar to previously determined particle movements driven by cortical actin flows in motile cells. We show that directed flows occur in one of the daughters of the first division that itself divides asymmetrically, but not in its sister that divides symmetrically. The cortical and cytoplasmic events of PC can be mimicked in other cells during cytokinesis by displacing the mitotic apparatus with the microtubule polymerization inhibitor nocodazole. In all cases, the polarity of the resulting cortical and cytoplasmic flows correlates with the position of the attenuated mitotic spindle formed. These cortical flows are also accompanied by a change in the distribution of the cortical actin network. The polarity of this redistribution is similarly correlated with the location of the attenuated spindle. These observations suggest a mechanism for generating polarized flows of cytoplasmic and cortical material during embryonic cleavages. We present a model for the events of PC and suggest how the poles of the mitotic spindle mediate the formation of the contractile ring during cytokinesis in C. elegans. 相似文献
7.
8.
In C. elegans, Wnt signaling regulates a number of asymmetric cell divisions. During telophase, WRM-1/beta-catenin localizes asymmetrically to the anterior cortex and the posterior daughter's nucleus. However, cortical WRM-1's functions are not known. Here, we use a membrane-targeted form of WRM-1 to show that cortical WRM-1 inhibits Wnt signaling and the nuclear localization of WRM-1. These functions are mediated by APR-1/APC, which regulates WRM-1 nuclear export. We also show that APR-1 as well as PRY-1/Axin and Dishevelled homologs localize asymmetrically to the cortex. Our results suggest a model in which cortical WRM-1 recruits APR-1 to the anterior cortex before and during division, and the cortical APR-1 stimulates WRM-1 export from the anterior nucleus at telophase. Because beta-catenin and APC are localized to the cortex in many cell types in different species, our results suggest that these cortical proteins may regulate asymmetric divisions or Wnt signaling in other organisms as well. 相似文献
9.
l(2)dtl (lethal (2) denticleless), is an embryonic lethal homozygous mutation initially identified in Drosophila melanogaster that produces embryos that lack ventral denticle belts. In addition to nucleotide sequence, bioinformatic analysis has revealed a conservation of critical functional motifs among the human L2DTL, mouse L2dtl, and Drosophila l(2)dtl proteins. The function of the L2DTL protein in the development of mammalian embryos was studied using targeted disruption of the L2dtl gene in mice. The knock-out resulted in early embryonic lethality. L2dtl-/- embryos were deformed and terminated development at the 4-8-cell stage. Microinjection of a small interfering RNA (siRNA) vector (siRNA-L2dtl) into the two-cell stage nuclei of wild-type mouse embryos led to cell cycle progression failure, termination of cell division, and, eventually, embryonic death during the preimplantation stage. Morphological studies of the embryos 54 h after injection showed fragmentation of mitotic chromosomes and chromosomal lagging, hallmarks of mitotic catastrophe. The siRNA-L2dtl-treated embryos eventually lysed and failed to develop into blastocysts after 72 h of in vitro culturing. However, the embryos developed normally after they were microinjected into one nucleus of the two-celled embryos. The siRNA studies in HeLa cells showed that L2dtl protein depletion results in multinucleation and down-regulation of phosphatidylinositol 3-kinase, proliferating cell nuclear antigen, and PTTG1/securin, which might partially explain the mitotic catastrophe observed in L2dtl-depleted mouse embryos. Based on these findings, we conclude that L2dtl gene expression is essential for very early mouse embryonic development. 相似文献
10.
11.
Marko Zalokar 《Developmental biology》1976,49(2):425-437
Permeabilized eggs of Drosophila melanogaster were incubated in tritiated uridine, valine, and phenylalanine. The uptake and incorporation into TCA-insoluble material were measured by scintillation counting. There was very little incorporation of uridine before the blastoderm stage. At the blastoderm stage, the egg took up 2.4 pmoles/hr of uridine and incorporated 0.13 pmoles into RNA (assuming no dilution of specific activity of the precursor). The uptake of amino acids varied with the age of the embryo; virgin eggs synthesized about as much protein as fertilized eggs. Autoradiography of eggs incubated in uridine showed a lack of RNA synthesis in nuclei until the start of the blastoderm formation. The small amount of uridine incorporation before this stage was due to mitochondria. Incorporation of amino acids was uniform in the cytoplasm until the blastoderm; there was no incorporation by yolk granules. Regional difference in labeling appeared during gastrulation. The pole cells did not form RNA during the blastoderm stage, formation started during gastrulation. Protein labeling of the pole cells, on the contrary, was very strong in the blastoderm and early gastrula. These results indicate that the expression of zygotic genome before the blastoderm stage is unlikely. 相似文献
12.
G M Kolodny 《Journal of molecular biology》1973,78(1):197-210
Evidence is presented for transfer of proteins between cells in culture, using techniques which previously have shown RNA transfer and the lack of DNA transfer between cells in culture. These techniques involved making donor cells heavier than recipient cells by having them ingest tantalum particles. After coculture of donor and recipient cells the two cell types were separated by centri- fugation on Ficoll gradients and the recipient cells analyzed for radioactively labeled proteins that may have passed from the prelabeled donor cells.These techniques also provided evidence for passage of donor cell proteins to recipient cell nuclei. Examination of the nuclear proteins in the recipient cells revealed that histones were transferred intercellularly to a greater extent than other nuclear proteins. The histone subfractions in the recipient cell nuclei were studied by acrylamide gel electrophoresis. No major differences were found in the proportion of each histone subfraction that was transferred to the recipient cell nuclei. 相似文献
13.
Relationship between nuclear remodeling and development in nuclear transplant rabbit embryos. 总被引:20,自引:0,他引:20
The present study characterized the profile of nuclear remodeling in nuclear transplant rabbit embryos and investigated the relationship between chromatin behavior after transfer and embryo development. The developmental potential and pattern of remodeling of donor nuclei from cleavage-, morula-, and blastocyst- (inner cell mass ICM, and trophectoderm, TE) stage donors were evaluated. In addition, we determined whether a modification in the synchrony between blastomere fusion and oocyte activation altered the profile of nuclear remodeling and affected development of reconstituted embryos. Development to blastocysts was similar with 8- and 32-cell-stage donor nuclei (42% and 33%, respectively, p greater than 0.1). However, it was reduced with ICM transplants (17%, p less than 0.05), and development of TE transplants did not progress beyond the 8-cell stage. Upon blastomere fusion into nonactivated oocyte cytoplasm, nuclear remodeling was characterized by premature chromosome condensation (PCC), followed by pronuclear (PN) formation and swelling. PCC occurred synchronously within 1.2-1.5 h post-fusion with all stages of donor nuclei (p greater than 0.1). PN formation in 8- and 32-cell transplants occurred approximately 4 h after fusion, and was synchronous to that of female pronuclei in activated oocytes; however, it was delayed in ICM and TE transplants (p less than 0.01). With all stages of donor nuclei, final nuclear diameter was similar to, or larger than, that of female pronuclei. Fusion to activated oocyte cytoplasm, as opposed to nonactivated cytoplasm, prevented PCC and extensive nuclear swelling (16.0 +/- 0.7 vs. 30 +/- 0.7 microns, respectively, p less than 0.01). Nuclear diameter in early embryos was smaller (p less than 0.01), and development to blastocysts was reduced (p less than 0.05). The results indicate that remodeling of the donor nucleus is not essential for development to blastocysts; however, it is beneficial. Furthermore, complete reprogramming seems possible only after remodeling of the donor nucleus, i.e., PCC in nonactivated cytoplasm, followed by nuclear swelling upon activation of the oocyte. 相似文献
14.
F Roegiers C Djediat R Dumollard C Rouvière C Sardet 《Development (Cambridge, England)》1999,126(14):3101-3117
Many eggs undergo reorganizations that localize determinants specifying the developmental axes and the differentiation of various cell types. In ascidians, fertilization triggers spectacular reorganizations that result in the formation and localization of distinct cytoplasmic domains that are inherited by early blastomeres that develop autonomously. By applying various imaging techniques to the transparent eggs of Phallusia mammillata, we now define 9 events and phases in the reorganization of the surface, cortex and the cytoplasm between fertilization and first cleavage. We show that two of the domains that preexist in the egg (the ER-rich cortical domain and the mitochondria-rich subcortical myoplasm) are localized successively by a microfilament-driven cortical contraction, a microtubule-driven migration and rotation of the sperm aster with respect to the cortex, and finally, a novel microfilament-dependant relaxation of the vegetal cortex. The phases of reorganization we have observed can best be explained in terms of cell cycle-regulated phases of coupling, uncoupling and recoupling of the motions of cortical and subcortical layers (ER-rich cortical domain and mitochondria-rich domain) with respect to the surface of the zygote. At the end of the meiotic cell cycle we can distinguish up to 5 cortical and cytoplasmic domains (including two novel ones; the vegetal body and a yolk-rich domain) layered against the vegetal cortex. We have also analyzed how the myoplasm is partitioned into distinct blastomeres at the 32-cell stage and the effects on development of the ablation of precisely located small fragments. On the basis of our observations and of the ablation/ transplantation experiments done in the zygotes of Phallusia and several other ascidians, we suggest that the determinants for unequal cleavage, gastrulation and for the differentiation of muscle and endoderm cells may reside in 4 distinct cortical and cytoplasmic domains localized in the egg between fertilization and cleavage. 相似文献
15.
16.
Takashi Shimizu 《Developmental biology》1981,85(1):77-88
Changes in the cortical organization at the animal pole are examined by scanning and transmission electron microscopy in the Tubifex egg undergoing second polar body formation. At very early anaphase of the second meiosis, the egg surface overlying the meiotic apparatus is undulated, but its neighboring surface appears to be smooth. Although a microfilamentous cortical layer is found in the smooth area, the cortical layer of the undulating area is thin and devoid of filamentous structures except for its central part where some filaments are observed. This local differentiation takes place normally in colchicine-treated eggs where the meiotic apparatus is destroyed. Along with the progression of the anaphase movement, the egg surface of the undulating area is, first, uplifted into a cone-shaped cytoplasmic bulge (presumptive polar body); then the height and surface area of the bulge gradually increase. The distal surface of the growing bulge appears to be undulated whereas the sides of the bulge are relatively smooth. Transmission electron microscopy reveals that a thick microfilamentous cortical layer is always localized at the proximal region of this bulge; other regions of the bulge are characterized by a thin cortical layer which is devoid of filamentous structure except for the apical portion of the bulge. Microfilaments at the base of the bulge are perpendicular or oblique to the egg surface. The cortical layer of the egg which is continuous to that of the proximal region of the bulge comprises microfilaments running parallel to the surface. The attainment of the bulge to its full size is followed by the development of the cleavage furrow along its base. The cleavage furrow appears to bisect the spindle midway between its poles. In cytochalasin B-treated eggs, where some cortical microfilaments are detected at the animal pole, a cytoplasmic bulge lower in height and wider in the diameter of its base than the normal one forms at the animal pole; however, it is subsequently resorbed into the egg. The formation of a cleavage furrow is not observed in these eggs. The mechanism of the polar body formation is discussed in the light of the present observations. 相似文献
17.
Takashi Shimizu 《Developmental biology》1981,85(1):65-76
The fine structure of the animal pole cortex is examined in the fertilized Tubifex egg undergoing the formation of the second meiotic apparatus (MA). The fully formed MA which orients its axis at right angles to the surface is found at the animal pole about 40 min after formation of the first polar body. It is composed of a spindle and asters at its poles; a centriole is found in the inner aster, but not in the peripheral aster adjacent to the surface. During the formation of the MA, the animal pole surface is lined with a 0.15-μm-thick, electron-dense cortical layer, which is rich in microfilaments. The arrangement of the filaments in the layer changes from a parallel array to a meshwork with progressive formation of the MA. Microtubules of the peripheral aster terminate in the cortical layer. When a jet stream of glycerol/dimethyl sulfoxide solution is applied to an egg fragment glued on a polylysine-coated coverslip, an egg cortex-MA complex is isolated on the coverslip; the MA appears to be tethered to the egg surface by the structural connection between the filamentous cortical layer and microtubules of the peripheral aster. Cytochalasin B (50 μg/ml), when administrated at early phase of the MA formation, does not show any effect on the structure of the cortical layer and the MA; however, if eggs shortly before the termination of the first polar body formation are immersed in the same test solution, the cortical layer of the animal pole becomes thinner, and the filamentous material is not observed in it. Furthermore, in these eggs, the peripheral aster and the spindle are not structurally discernible because of the suppression of microtubule assembly, whereas microtubules on kinetochores and in the inner aster are normally developed. These results are discussed in relation to the role of the animal pole cortex in fixing of the MA to the egg surface and in forming of the MA. 相似文献
18.
Subcellular fractionation of oviduct tissue from estrogen-treated chicks indicated that the bulk of the protein kinase activity of this tissue is located in the cytoplasmic and nuclear fractions, DEAE-cellulose chromatography of cytosol revealed a major peak of cAMP stimulatable activity eluting at 0.2 M KCl. This peak was further characterized and found to exhibit properties consistent with cytoplasmic cAMP dependent protein kinases isolated from other tissues; it had a Km for ATP of 2 X 10(-5) M, preferred basic proteins such as histones, as substrate, and had a M of 165 000. Addition of 10(-6) M cAMP caused the holoenzyme to dissociate into cAMP binding regulatory subunit and a protein kinase catalytic subunit. Extraction of purified oviduct nuclei with 0.3 M KCl released greater than 80% of the kinase activity in this fraction. Upon elution from phospho-cellulose, the nuclear extract was resolved into two equal peaks of kinase activity (designated I and II). Peak I had a sedimentation coefficient of 3S and a Km for ATP of 13 muM. while peak II had a sedimentation coefficient of 6S and a Km for ATP of 9 muM. Both enzymes preferred alpha-casein as a substrate over phosvitin or whole histone, although they exhibited different salt-activity profiles. The cytoplasmic and nuclear enzymes were well separated on phospho-cellulose and this resin was used to quantitate the amount of cAMP dependent histone kinase activity in the nucleus and the amount of casein kinase activity in the cytosol. Protein kinase activity in nuclei from estrogen-stimulated chicks was found to be 40% greater than hormone-withdrawn animals. This increase in activity was not due to translocation of the cytoplasmic protein kinase in response to hormone, but to an increase in nuclear (casein) kinase activity. During the course of this work, we observed small but significant amounts of cAMP binding activity very tightly bound to the nuclear fraction. Solubilization of the binding activity by sonication in high salt allowed comparison studies to be performed which indicated that the nuclear binding protein is identical with the cytoplasmic cAMP binding regulatory subunit. The possible role of the nuclear binding activity is discussed. 相似文献
19.
Samples of 1 M KCl solution and 10 samples of intact frog striated muscle were studied at 4-7 degrees C and/or at 21-22 degrees C. Field inhomogeneity was minimized by using small sample volumes and by using a superconducting magnet designed specifically to provide highly homogeneous fields. In the present experiments, magnetic field inhomogeneity was measured to contribute less than 15% to the free induction decay observed for intracellular 39K. The signal-to-noise ratio of the measurements was enhanced by means of extensive time-averaging. The rates of nuclear relaxation for 39K in aqueous solution were 22 +/- 3 (mean +/- 95% confidence limits) s-1 at 4-7 degrees C and 15 +/- 2 s-1 at 21-22 degrees C. For intracellular 39K, (1/T2) was measured to be 327 +/- 22 s-1 and 229 +/- 10 s-1 at the lower and higher temperatures, respectively. The corresponding values for (1/T1) in the same muscle samples were 198 +/- 31 s-1 and 79 +/- 15 s-1 at 4-7 degrees C and at 21-22 degrees C, respectively. These results for 39K are similar to those previously obtained for intracellular 23Na. Since less than 1% of the intracellular 23Na has been estimated to be immobilized, fractional immobilization of intracellular 39K is also likely to be insubstantial. 相似文献
20.
V Taglietti F Tanzi R Romero 《Bollettino della Società italiana di biologia sperimentale》1983,59(7):949-954
Voltage-clamp experiments in full-grown frog oocytes, in a range of membrane potentials from 90 mV negative to 30 mV positive, have revealed the presence of voltage-dependent channels selective for K+, blocked by extracellular TEA. The percentage of open K+-channels increases with membrane depolarizations over a range from -40 mV to +10 mV, thus supporting the outward rectification in the I/V relationship. The current transport through the K+-channels open at different potential levels and in various [K+]o takes place in accordance with the constant-field assumptions. The leakage current of the oocyte membrane was found to be considerable large. 相似文献